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Critical Thinking in Aquifer Test Interpretation 
 
Foundations of pumping test interpretation: 
1. The Theis model 
 
Christopher J. Neville 
S.S. Papadopulos & Associates, Inc. 
Last update: April 28, 2025 
 
Overview 
 
In these notes, a detailed discussion of the Theis model of an aquifer response to pumping 
is presented, along with the analyses that are based upon it. The Theis model is the 
foundation of pumping test interpretation. When applied appropriately, the Theis model 
yields representative estimates of the bulk-average transmissivity of a formation. The 
Theis model incorporates a set of relatively restrictive assumptions. Although some of 
these assumptions may be violated to varying degrees during actual tests, the Theis model 
has enduring value as a benchmark against which the observed responses to pumping can 
be assessed, supporting the diagnosis of site conditions. 
 
Outline 
 
1. The Theis (1935) conceptual model 
2. The mathematics of the Theis solution 
3. Example Theis analysis 
4. The Cooper and Jacob (1945) approximation 
5. Overview of the Cooper-Jacob analyses 
6. Cooper-Jacob time-drawdown analysis 
7. Motivation for using Cooper-Jacob time-drawdown analysis 
8. Choosing between the Theis and Cooper-Jacob analyses 
9. Introduction to Derivative Analysis 
10. Cooper-Jacob distance-drawdown analysis 
11. Composite analyses 
12. Case study: Application of the Cooper-Jacob composite analysis 
13. Summary of key points 
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1. The Theis (1935) conceptual model 
 
The conceptual model that underlies the Theis (1935) solution is the foundation on which 
all other analytical models of aquifer response to pumping are built. The Theis conceptual 
model is illustrated schematically in Figure 1. 
 
 

 
 

Figure 1. Conceptual model of the Theis solution 
 
 
To examine the foundations of the Theis model it is essential that its underlying 
assumptions be established clearly. Important assumptions are made regarding the 
aquifer, the pumping well and observation wells and background conditions. The 
assumptions incorporated in the Theis conceptual model are listed on Table 1. The 
assumptions are assembled into four categories. 
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Table 1. Assumptions incorporated in the Theis conceptual model 
 

The aquifer 
1 Darcy’s Law is valid 
3 The transmissivity of the aquifer is uniform and isotropic 
3 The aquifer is infinite in areal extent 
4 The aquifer is perfectly confined by impermeable strata across its 

top and bottom 
5 The potentiometric surface always remains above the top of the 

aquifer 
6 The release of water from storage is instantaneous and governed 

by linear constitutive relations with uniform properties that remain 
constant through time 

The pumping well 

7 There is a single pumping well 
8 The pumping well penetrates the full thickness of the aquifer 
9 The pumping well has an infinitesimal diameter 
10 The well pumps at a constant rate 

The observation wells 
11 The observation wells have infinitesimal diameter 

Background conditions 
12 The changes in water levels caused by pumped have been 

isolated from any background temporal trends 
 
The last assumption does not mean that the groundwater levels must be the same 
everywhere at the start of pumping or that they be steady prior to the test (i.e., a flat 
potentiometric surface). Nor does it mean that there cannot be changes in water levels 
during the test that are not caused by pumping from the test well. Rather, the assumption 
requires that the changes in groundwater levels attributable solely to pumping be 
established. 
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Motivation for considering the Theis model 
 
The Theis model is clearly a highly idealized model of aquifer response to pumping. As 
practitioners, we must recognize that many of the underlying assumptions will be 
violated to varying degrees during actual tests. Since no actual situation will ever 
conform exactly to the idealized Theis model, why do we bother even invoking the model 
to interpret pumping test data? There are at least two good reasons: 
 
1. The Theis solution can in fact be used to interpret at least a portion of almost all 

pumping test data. Although the underlying assumptions of the Theis model are quite 
restrictive, there is generally a portion of the test response for which the assumptions 
are not violated too severely; and 

 
2. The Theis model provides us with a benchmark against which we can assess the 

observed responses to pumping and diagnose the actual conditions at our site. In 
essence, checking site conditions against a list of the ideal assumptions allows us to 
identify the conceptual model that best describes our own site. 

 
Application of the Theis model provides preliminary quantitative characterization of a 
site, and just as importantly, provides a starting point for the diagnosis of site conditions. 
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2. The mathematics of the Theis (1935) solution 
 
Starting from the assumptions listed in Section 1, the governing equation for transient 
radial flow to a well is written as: 
 

𝑆𝑆 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑇𝑇 1
𝑟𝑟
𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑟𝑟 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�  0 < r < ∞ 

 
Here: 
 
s:   drawdown [L]; 
r:   radial distance from the pumped well to the observation well [L]; 
t:  elapsed time since the start of pumping [T]; 
T:  transmissivity (= KH × B) [L2T-1]; 
S:  storage coefficient (= Ss × B) [-]; 
KH:  horizontal hydraulic conductivity [LT-1]; 
Ss:  specific storage [L-1]; and 
B:  aquifer thickness [L]. 
 
The inside and outside boundary conditions are: 
 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑟𝑟→0

2𝜋𝜋𝜋𝜋𝜋𝜋
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑟𝑟, 𝑡𝑡) = −𝑄𝑄 
 

𝑠𝑠(∞, 𝑡𝑡) = 0 
 
The initial conditions are: 
 

𝑠𝑠(𝑟𝑟, 0) = 0 
 
The parameter Q denotes the pumping rate [L3T-1]. A positive value of Q denotes a 
withdrawal of water from the aquifer, which gives rise to a positive drawdown, that is, a 
decline in water levels with respect to non-pumping conditions. 
 
The governing equation, boundary and initial conditions comprise a classical boundary 
value problem. When C.V. Theis posed the problem in 1935 with respect to transient 
flow to a well, the solution was well known in the theory of heat conduction (for 
example, the solution is presented in Introduction to the Mathematical Theory of the 
Conduction of Heat in Solids, H.S. Carslaw, 1921). Theis’ crucial contributions to the 
problem was not the solution; rather, it was his insight that an analogy could be made 
between the transient flow of groundwater in porous media and the transient conduction 
of heat in solids. Theis’ analogy has formed the basis for all subsequent developments in 
transient groundwater hydraulics. 
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The solution to the boundary-value problem set up by Theis can be derived by several 
alternative integral transform methods or by successive integration using the Boltzmann 
transformation. The solution for the drawdown at any distance r and elapsed time t is 
written as: 
 

𝑠𝑠(𝑟𝑟, 𝑡𝑡) =
𝑄𝑄

4𝜋𝜋𝜋𝜋
 �  

1
𝑦𝑦

 𝐸𝐸𝐸𝐸𝐸𝐸 {−𝑦𝑦}
∞

𝑟𝑟2𝑆𝑆
4𝑇𝑇𝑇𝑇

 𝑑𝑑𝑑𝑑 

 
The integral is one version of the exponential integral, which arises in other physical 
applications. Abramowitz and Stegun (1972, p. 228) define the integral as: 
 

�
1
𝑦𝑦
𝐸𝐸𝐸𝐸𝐸𝐸{−𝑦𝑦} 

∞

𝑥𝑥
𝑑𝑑𝑑𝑑 = 𝐸𝐸1(𝑥𝑥) 

 
The solution can be therefore be written as: 
 

𝑠𝑠(𝑟𝑟, 𝑡𝑡) =
𝑄𝑄

4𝜋𝜋𝜋𝜋
𝐸𝐸1 �

𝑟𝑟2𝑆𝑆
4𝑇𝑇𝑇𝑇

� 

 
The function E1 is slightly different in form from the “classical” exponential integral 
defined as: 
 

𝐸𝐸𝐸𝐸(𝑥𝑥) =
𝑄𝑄

4𝜋𝜋𝜋𝜋
 �  

1
𝑦𝑦

 𝐸𝐸𝐸𝐸𝐸𝐸 {−𝑦𝑦}
𝑥𝑥

−∞
 𝑑𝑑𝑑𝑑 

 
The functions E1 and Ei are closely related: 
 

𝐸𝐸1(𝑥𝑥) = −𝐸𝐸𝐸𝐸(−𝑥𝑥) 
 
Using this last identity, the Theis solution can be written as: 
 

𝑠𝑠(𝑟𝑟, 𝑡𝑡) =
𝑄𝑄

4𝜋𝜋𝜋𝜋
�−𝐸𝐸𝐸𝐸 �−

𝑟𝑟2𝑆𝑆
4𝑇𝑇𝑇𝑇

�� 

 
The last equation is the form of the solution that usually appears in the petroleum 
engineering literature, where it is referred to as the “line-sink” or as the “Ei” solution (see 
for example, Matthews and Russell, 1967; p. 11). 
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Hydrogeologists write their version of the Theis solution as: 
 

𝑠𝑠(𝑟𝑟, 𝑡𝑡;𝑢𝑢) =
𝑄𝑄

4𝜋𝜋𝜋𝜋
𝑊𝑊(𝑢𝑢) 

 
Here u is the dimensionless argument of the exponential integral: 
 

𝑢𝑢 =
𝑟𝑟2𝑆𝑆
4𝑇𝑇𝑇𝑇

 
 
W(u) is referred to as the Theis well function.  
 
Comparing the different forms of the Theis solution, we see that W(u) = E1(u) = –Ei(-u). 
 
The Theis well function represents a dimensionless form, sD, of the drawdown at any 
radial distance r and time t: 
 

𝑠𝑠𝐷𝐷 =
4𝜋𝜋𝜋𝜋
𝑄𝑄

 𝑠𝑠(𝑟𝑟, 𝑡𝑡) = 𝑊𝑊�𝑢𝑢 =
𝑟𝑟2𝑆𝑆
4𝑇𝑇𝑇𝑇

� 

 
The dimensionless quantity u is inversely related to the elapsed time, the values of 1/u 
become progressively larger as the duration of the test continues. We are accustomed to 
viewing time moving left to right; therefore, as shown in Figure 2 the Theis well function 
is generally plotted on log-log axes as W(u) against 1/u. 
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Figure 2. Theis well function 
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3. Example Theis analysis 
 
Analysis of drawdown data with the Theis solution is illustrated with data from a test 
conducted at Gridley, Illinois (Walton, 1970). The average pumping rate is 220 gpm. The 
drawdown data from Well #1, located 824 ft from the pumping well, are plotted in 
Figure 3. 
 

 
 

Figure 3. Drawdowns for Gridley observation Well #1 
Data from Walton (1970) 
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The results of the match of the Theis solution to the observed drawdowns are shown in 
Figure 4. The Theis analyses can be executed by either: 
 

• Using a type-curve matching procedure, which involves overlaying versions of 
Figures 2 and 3 having the same scales; 

• Conducting a visual match with a computer-assisted interpretation package, which 
involves moving the type curve with a mouse on a computer screen to overlie the 
data; or 

• Conducting an “automatic” match with a computer-assisted interpretation 
package, which involves inferring the aquifer parameters from a nonlinear least 
squares regression. 

 

 
 

Figure 4. Match of the drawdowns with the Theis solution 
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4. The Cooper and Jacob (1945) approximation 
 
The Theis well function can be expanded in the following infinite series: 
 

𝑊𝑊(𝑢𝑢) = −0.5772 − 𝑙𝑙𝑙𝑙{𝑢𝑢} + 𝑢𝑢 −
𝑢𝑢2

2 × 2!
+

𝑢𝑢3

3 × 3!
−⋯ 

 
The leading term 0.5772 is referred to as Euler’s constant. 
 
Cooper and Jacob (1945) recognized that when u becomes sufficiently small, the Theis 
well function can be approximated closely using just the first two terms of the series: 
 

𝑊𝑊(𝑢𝑢)  ≅  −0.5772 − ln{𝑢𝑢} 
 
In other words, beyond some value of u, the arithmetic value of the dimensionless 
drawdown plots as a straight line against the logarithm of u. Reflecting this limiting 
behaviour, the Theis well function and Cooper-Jacob approximation are shown together 
on a semilog plot in Figure 5. As shown in the figure, for larger values of 1/u the 
Cooper-Jacob approximation matches the Exponential integral closely. The limit of 
applicability of the Cooper-Jacob approximation is typically cited to be u < 0.01 
(1/u > 100) [see for example, Todd and Mays (2005)]. However, as shown in Figure 5, 
the Cooper and Jacob approximation is still very close for larger values of u. For 
example, for u = 0.1 (1/u = 10), the error in the approximation is still only about 5%. 
 
Substituting for the approximation of W(u) in the Theis solution yields: 
 

𝑠𝑠(𝑟𝑟, 𝑡𝑡) =
𝑄𝑄

4𝜋𝜋𝜋𝜋
 𝑊𝑊(𝑢𝑢) ≅

𝑄𝑄
4𝜋𝜋𝜋𝜋

 [−0.5772 − 𝑙𝑙𝑙𝑙{𝑢𝑢}] =
𝑄𝑄

4𝜋𝜋𝜋𝜋
 �−0.5772 − 𝑙𝑙𝑙𝑙 �

𝑟𝑟2𝑆𝑆
4𝑇𝑇𝑇𝑇

�� 

 
This solution can be rearranged using the properties of the log function: 
 

𝑠𝑠(𝑟𝑟, 𝑡𝑡) ≅
𝑄𝑄

4𝜋𝜋𝜋𝜋
 𝑙𝑙𝑙𝑙 �𝐸𝐸𝐸𝐸𝐸𝐸{−0.5772}  × �

4𝑇𝑇𝑇𝑇
𝑟𝑟2𝑆𝑆

�� =  
𝑄𝑄

4𝜋𝜋𝜋𝜋
 𝑙𝑙𝑙𝑙 �2.2459 

𝑇𝑇𝑇𝑇
𝑟𝑟2𝑆𝑆

� 
 
Finally, converting to log10 (which requires only the factor ln(10)=2.303), we obtain: 
 

𝑠𝑠(𝑟𝑟, 𝑡𝑡) ≅
𝑄𝑄

4𝜋𝜋𝜋𝜋
 2.303 𝑙𝑙𝑙𝑙𝑙𝑙 �2.2459 

𝑇𝑇𝑇𝑇
𝑟𝑟2𝑆𝑆

� 
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Figure 5. Cooper-Jacob approximation of the Theis well function 
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5. Overview of the Cooper-Jacob analyses of drawdown data 
 
Three types of analyses are developed from the Cooper-Jacob approximation: 
 
• Time-drawdown analysis 

The drawdown records of individual wells are analyzed, by plotting drawdown 
(arithmetic scale) versus elapsed time (log scale); 

 
The interpretation of individual drawdown-versus-time records is a staple technique of 
hydrogeologic practice.  
 
• Distance-drawdown analysis 

The drawdowns at multiple wells at a single time are analyzed, by plotting drawdown 
(arithmetic scale) versus distance from the pumping well (log scale); and 

 
• Composite analysis 

The complete time-drawdown records of multiple wells are analyzed, with drawdown 
(arithmetic scale) plotted against time divided by distance-squared (t/r2). 

 
All three Cooper-Jacob Straight-Line (CJSL) analyses comprise three tasks: 
 
1. Identification of that portion of the response that matches the Theis conceptual model 

– that is, identification of a sustained interval over which the data approximate a 
straight line on a semilog plot; 

2. Calculation of the slope of the straight line; and 
3. Estimation of the transmissivity and confined storage coefficient (storativity). 
 
The developments of the three Cooper-Jacob analyses are presented in the following 
sections. 
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6. Cooper-Jacob time-drawdown analysis 
 
The Cooper-Jacob time-drawdown analysis is developed by differentiating the Cooper-
Jacob approximation with respect to log {t} at a constant radial distance r: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕[log {𝑡𝑡}]�𝑟𝑟

=  2.303 
𝑄𝑄

4𝜋𝜋𝜋𝜋
  

 
Solving for T: 
 

𝑇𝑇 = 2.303
𝑄𝑄

4𝜋𝜋
�

𝜕𝜕𝜕𝜕
𝜕𝜕(𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡)

�
𝑟𝑟
�
−1

= 2.303
𝑄𝑄

4𝜋𝜋
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝑟𝑟)−1 

 
Method: 
 
Plot s vs. t at a fixed radial distance, on semilog axes: 
 
 

  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝜕𝜕𝜕𝜕
𝜕𝜕(𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡) = 𝛥𝛥𝛥𝛥

𝑙𝑙𝑙𝑙𝑙𝑙  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡
 

 
 
 
 
 
 
 
 
 
 
      
 
 
 
 
 
Here: ∆s = drawdown per log cycle t 
 𝑡𝑡0 = time extrapolated to s = 0 
 
  

( ) 1
2.3034

QT SLOPEπ
−

=  

0
22.2459 TtS

r
=  
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Example analysis: 
 
The drawdowns at observation well Well #1, located 824 ft from the pumping well, are 
plotted in Figure 6. 
 

 
 

Figure 6. Drawdowns for Gridley observation Well #1 
Data from Walton (1970) 
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Beyond about 20 minutes, the drawdowns approximate a straight line on the semilog plot. 
Fitting a straight line through this portion of the data yields a transmissivity of 
10,500 gpd/ft: 
 

𝑇𝑇 = 2.303 
(220 gpm)

4𝜋𝜋
1

(5.54 ft) �
1440 min

d
� = 𝟏𝟏𝟏𝟏,𝟓𝟓𝟓𝟓𝟓𝟓 

𝐠𝐠𝐠𝐠𝐠𝐠
𝐟𝐟𝐟𝐟

 

 
Converting the transmissivity yields 1,400 ft2/d. The estimated transmissivity is close to 
the value of 1,320 ft2/d estimated from the Theis analysis (Figure 4). 
 

 
 

Figure 7. Cooper-Jacob time-drawdown analysis for Gridley observation Well #1 
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7. Motivation for using the Cooper-Jacob time-drawdown analysis 
 
In contemporary practice, aquifer test data are generally interpreted with the aid of 
computer-based analysis packages. These packages support either visual type curve 
matching or automatic regression of the data. The obvious question arises: Why should 
we consider methods based on the Cooper-Jacob approximation when it is just as 
straightforward to use the exact Theis solution? There are at least three compelling 
reasons to retain and apply both analyses. 
 
The Theis log-log analysis has a built-in threat to its reliable application. In our opinion, 
the log-log analysis tends to inappropriately focus the analyst’s attention on the data 
obtained relatively soon after the start of pumping. A logarithmic axis for the drawdown 
visually exaggerates the magnitude of early drawdowns. Since the function W(u) 
becomes relatively flat for larger values of 1/u, it is tempting to fit the response where the 
response exhibits the most distinctive curvature. As shown in Figure 8, the larger 
curvature occurs for the smallest values of 1/u, that is, at relatively early times. 
 

 
 

Figure 8. Area of greatest “apparent” response in the Theis solution 
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There is usually significant uncertainty associated with data collected soon after the start 
of pumping: 
 
1. The magnitudes of the early drawdowns are relatively small, so there is bound to be 

some imprecision in their measurement; and 
 
2. There is usually some noise in the data because of the adjustments in the pumping 

rate that are often required at the start of a test. 
 
Example 1: 
 
The first source of uncertainty is illustrated with the drawdown data recorded during a 
pumping test conducted at Elmira, Ontario. As shown in Figure 9, this particular analysis 
with the Theis type-curve focused on matching the data from the first 10 minutes of 
pumping. These data are much less significant than the later drawdowns with respect to 
the diagnosis of the response of the aquifer to pumping. Furthermore, the early data are 
limited in their resolution. The drawdown record exhibits an interesting feature that is 
characteristic of data obtained with a pressure transducer: the record shows distinct 
jumps. The jumps are in fact directly related to the sensitivity of the transducer, rather 
than indicating steps in the actual response or variations in the pumping rate. The jumps 
make up most of the changes in water levels at the early stages of the test. 
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Figure 9. Drawdown response relatively distant from the pumping well 
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Example 2: 
 
Uncertainties introduced by brief variations in the pumping rate at the start of a test are 
illustrated by a hypothetical example that is intended to represent typical conditions 
during a pumping test. The aquifer is 5 m thick, with a horizontal hydraulic conductivity 
of 10-5 m/sec and a specific storage of 10-5 m-1. The aquifer is pumped for 
100,000 seconds (just over 1 day). It is assumed that the pumping rate is held at a 
constant rate of about 10 USgpm, except for a brief period of adjustment during the first 
10 minutes. The pumping history is tabulated below and plotted in Figure 10. 
 

Time 
(minutes) 

Pumping rate 
(USgpm) 

Pumping rate 
(m3/sec) 

0-5 19 1.210E-3 
5-10 14 9.075E-4 
10→ 10 6.309E-4 

 

 
 

Figure 10. Pumping history for Example 2 
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We note two aspects of the variations in the pumping rate during the test: 
 
1. The variations in the pumping rate considered in this example are typical for an actual 

test. Most tests require a brief interval during which valves are adjusted to establish a 
constant rate over the longer term; and 

2. The duration of the period of adjustments in the pumping rate at the start of this 
example are brief relative to the entire duration of the test. When plotted to full scale, 
the two steps at the start appear as small blips.  We might not even detect or record 
these “blips”. 

 
We will examine the drawdown at an observation well 5 m from the pumping well. The 
first plot of the drawdowns at the observation well, Figure 11, is made with log-log axes, 
in anticipation of an analysis with the Theis solution. 
 

 
 

Figure 11. Drawdown calculated at r = 5 m 
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In a “real-world” situation, it is possible that the very early adjustments of the pumping 
rate might not even be recorded. In that case, we might be inclined to match the early 
portion of the data, which is indeed matched closely with the Theis type curve. The 
deviation between the Theis solution and the data at later times might be explained as a 
“boundary effect”, for example. The results of the analysis are shown in Figure 12. The 
estimated transmissivity is 5×10-5 m2/s, half of the true transmissivity in this example. If 
we concentrated on the early time data but used the pumping rate that was maintained 
through almost the entire test, we could make very serious errors in our interpretations. 
 
 

 
 

Figure 12. Match with the Theis solution: Analysis #1 
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The Theis solution calculated assuming a constant pumping rate of 6.309×10-4 m3/s, the 
rate for all but the first 10 minutes of the test, is shown in Figure 13. The estimated 
parameters are identical to those specified for the example. If we chose to fit a Theis 
curve to the data beyond 1,000 seconds (which is still only 16 minutes into the day-long 
test), and assumed the constant rate established after 10 minutes, our interpretation is 
reliable; however, we open ourselves to the accusation that we have deliberately ignored 
much of our data.  
 

 
 

Figure 13. Match with the Theis solution: Analysis #2 
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The early variations in the pumping rate appear to have a dramatic effect on the response 
shown in Figure 13. The significance of these variations is blown out of proportion by the 
use of a logarithmic axis for drawdown. 
 
The semilog plot of the drawdowns at the observation well is shown in Figure 14. This 
plot allows us to clearly see the evolution of the longer-term response, and thereby 
identify the effects of the brief early variations in the pumping rate. The dashed line 
shown on the plot represents the drawdown that would have been observed if the 
pumping rate had remained constant throughout the test. A Cooper-Jacob interpretation 
of the later time data is essentially insensitive to the early variations in the pumping rate. 
 

 
 

Figure 14. Drawdown calculated at r = 5 m, semilog plot 
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8. Choosing between the Theis and Cooper-Jacob analyses 
 
The preceding examples suggest that analyses that focus on the earliest portion of the 
drawdown response may yield unreliable estimates of aquifer properties. The examples 
may have suggested that the Theis log-log analysis is prone to this problem. It is 
important to note that this is not a fundamental defect in the Theis analysis. Rather, these 
examples should be taken as warnings that like all analysis techniques, the Theis log-log 
analysis must be applied critically. Cooper-Jacob analyses are only superior if they lead 
the analyst to focus on the portion of the aquifer response that yields the most 
representative estimate of transmissivity. 
 
The key point to bear in mind is that the conceptual models that underlie the Theis and 
Cooper-Jacob analyses are identical. The two analyses do not provide independent 
transmissivity estimates. Rather, the two analyses are complementary. Every pumping 
test analyst should employ both methods for the same set of data. The results from the 
two methods should be similar, demonstrating that the interpretation is at least internally 
consistent. This approach is demonstrated with a case study. 
 
Case study 
 
A pumping test to support a development application was conducted at a site in Kinloss 
Township, southern Ontario. The test was conducted in a well open across the upper 
portion of the bedrock. Key aspects of the test are indicated below. 
 
• The depth to the water table on-site is between 2 and 4 m. 
• The well is open in the upper portion of the bedrock, in the Dundee Formation, a 

dolomitic limestone. The primary water-bearing zone in the bedrock is between 2 and 
4 m below the overburden-bedrock contact. 

• On site, the overburden is approximately 33 m thick. The overburden consists of sand 
and bouldery gravel with thickness up to 27 m, underlain by a stiff, dense stony till 
that is referred to locally by drillers as hardpan. The presence of the till unit results in 
a confined bedrock aquifer. 

 
The well was pumped for 1 day at an average rate of 25 Igpm (1.89×10-3 m3/sec). 
Drawdowns were measured only in the 4-inch diameter pumping well (rw = 0.0508 m). 
The drawdowns were analyzed using the Theis and Cooper-Jacob methods. 
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i. Theis analysis 
 
The Theis analysis is reproduced in Figure 15. The transmissivity estimated with the 
analysis is 3.2×10-5 m2/sec. 
 

 
 

Figure 15. Pumping test example, Theis analysis 
 
The application of the Theis analysis for this example appears to be a reasonable. The 
analyst restricted the type-curve match to between about 20 seconds and 400 seconds. 
The earliest drawdown may incorporate some wellbore losses, and the drawdowns appear 
to stabilize beyond 1000 seconds of pumping. 
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ii. Cooper-Jacob straight-line analysis 
 
The reported Cooper-Jacob analysis is reproduced in Figure 16. The analyst identified 
what appeared to be a straight line and fit that portion of the response. The slope of the 
line drawn by the analyst is about 0.72 m per log cycle of time. If we substitute this into 
the formula for the transmissivity, we obtain: 
 

𝑇𝑇 = 2.3026
𝑄𝑄

4𝜋𝜋
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1 

   = 2.3026
(1.89 × 10−3 m3/sec)

4𝜋𝜋
(0.72 m)−1 

    = 𝟒𝟒.𝟖𝟖 × 𝟏𝟏𝟎𝟎−𝟒𝟒 𝐦𝐦𝟐𝟐/sec 
 

 
 

Figure 16. Pumping test example, Reported Cooper-Jacob analysis 
 
The transmissivity estimated with the Cooper-Jacob analysis is about 15 times higher 
than the value estimated with the Theis analysis. A qualified hydrogeologist would not 
simply report both transmissivity estimates and invite the reader to choose the more 
reliable value. Rather, a qualified hydrogeologist would note that the Theis and Cooper-
Jacob analyses share the same underlying conceptual model, and would further note that 
internally consistent analyses should yield similar transmissivity estimates. 
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iii. Cooper-Jacob straight-line re-analysis 
 
In reviewing the preceding analyses and results, we should immediately notice that the 
Theis and Cooper-Jacob analyses were fit to completely different portions of the 
drawdown data. The Theis analysis was applied to the data between 20 and 400 seconds. 
In contrast, the semilog straight line was fit to the data that begin at about 3,000 seconds. 
The data seem to fall closely on two straight lines. The question we should ask ourselves 
is: Was the Cooper-Jacob analysis applied to the appropriate portion of the data? 
 
In Figure 17, the Cooper-Jacob analysis is applied to the same portion of the data as the 
Theis analysis. As shown in the figure, these data also approximate a straight line. 
However, the slope of the first line is about 10.3 m per log cycle of time. If we substitute 
the slope of 10.3 m per log cycle t into the formula for the transmissivity, we obtain: 
 

𝑇𝑇 = 2.3026
(1.89 × 10−3 m3/sec)

4𝜋𝜋
(10.3 m)−1 

    =  𝟑𝟑.𝟒𝟒 × 𝟏𝟏𝟎𝟎−𝟓𝟓 𝐦𝐦𝟐𝟐/sec 
 
The revised transmissivity estimate is essentially the same as the estimate obtained with 
the Theis analysis (3.2×10-5 m2/sec). 
 

 
 

Figure 17. Pumping test example, Revised Cooper-Jacob analysis 
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9. Introduction to Derivative Analysis 
 
A Cooper-Jacob straight-line analysis consists of two tasks: 
 
1. Identification of that portion of the response that matches the Theis conceptual model 

– that is, identification of a sustained interval over which the data fall on a straight 
line in semilog space; and 

2. Calculation of the slope for application in the straight-line formula. 
 
The identification of the portion of the response that matches the Theis conceptual model 
is simplified by plotting the drawdown derivative. French petroleum engineers led by 
D. Bourdet presented this form of data treatment (Bourdet and others, 1983; Bourdet and 
others, 1989). 
 
Bourdet and his co-workers defined the derivative as: 
 

𝐷𝐷𝑡𝑡  (𝑠𝑠) =
𝜕𝜕[𝑠𝑠(𝑟𝑟, 𝑡𝑡)]
𝜕𝜕[ln{𝑡𝑡}]  

 
The derivative is defined with respect to the logarithm of time, rather than time itself. 
This definition follows directly from the Cooper-Jacob analysis. Recalling the Theis 
solution: 
 

𝑠𝑠(𝑟𝑟, 𝑡𝑡) =
𝑄𝑄

4𝜋𝜋𝜋𝜋
𝑊𝑊(𝑢𝑢) =

𝑄𝑄
4𝜋𝜋𝜋𝜋

�
𝑒𝑒−𝑥𝑥

𝑥𝑥
𝑑𝑑𝑑𝑑

∞

𝑢𝑢
 

 
Substituting for the Theis solution in the definition of the derivative yields: 
 

𝐷𝐷𝑡𝑡  (𝑠𝑠) =
𝜕𝜕

𝜕𝜕[ln{𝑡𝑡}] �
𝑄𝑄

4𝜋𝜋𝜋𝜋
�

𝐸𝐸𝐸𝐸𝐸𝐸{−𝑥𝑥}
𝑥𝑥

∞

𝑢𝑢
 𝑑𝑑𝑑𝑑� 

 

             =
𝑄𝑄

4𝜋𝜋𝜋𝜋
 
𝜕𝜕

𝜕𝜕(𝑢𝑢) ��
𝐸𝐸𝐸𝐸𝐸𝐸{−𝑥𝑥}

𝑥𝑥

∞

𝑢𝑢
 𝑑𝑑𝑑𝑑�

𝜕𝜕𝜕𝜕
𝜕𝜕[ln{𝑡𝑡}] 

 

             =
𝑄𝑄

4𝜋𝜋𝜋𝜋
 𝐸𝐸𝐸𝐸𝐸𝐸{−𝑢𝑢} 

 

             =  
𝑄𝑄

4𝜋𝜋𝜋𝜋
 𝐸𝐸𝐸𝐸𝐸𝐸 �−

𝑟𝑟2𝑆𝑆
4𝑇𝑇𝑇𝑇

� 
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If the Theis well function is replaced with the Cooper-Jacob approximation, the 
derivative of the drawdown with respect to the natural log of time is: 
 

𝐷𝐷𝑡𝑡  (𝑠𝑠) =
𝜕𝜕

𝜕𝜕[ln{𝑡𝑡}] �
𝑄𝑄

4𝜋𝜋𝜋𝜋
ln �2.2459 

𝑇𝑇𝑇𝑇
𝑟𝑟2𝑆𝑆

�� 

 
This is simply: 
 

𝐷𝐷𝑡𝑡  (𝑠𝑠) =
𝑄𝑄

4𝜋𝜋𝜋𝜋
 

 
The fact that the derivative of the Cooper-Jacob approximation is a constant should not 
come as a surprise. The Cooper-Jacob approximation is valid when drawdown plots as a 
straight line against the log of time. 
 
Defining the dimensionless drawdown as: 
 
 𝑠𝑠𝐷𝐷 = 4𝜋𝜋𝜋𝜋

𝑄𝑄
𝑠𝑠 

 
The dimensionless forms for the derivative become: 
 
• Theis solution: 𝐷𝐷𝑡𝑡(𝑠𝑠𝐷𝐷) = 𝐸𝐸𝐸𝐸𝐸𝐸{−𝑢𝑢}; and 
• Cooper-Jacob approximation: 𝐷𝐷𝑡𝑡(𝑠𝑠𝐷𝐷) = 1.0 
 
The dimensionless form of the derivative of the Theis solution is plotted in Figure 18. As 
expected, the derivative converges on the constant value given by the Cooper-Jacob 
approximation. The approach to a constant value of derivative is referred to as a 
“plateau” in the derivative plot. 
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Figure 18. Dimensionless derivative of the Theis solution 
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Since the Cooper-Jacob approximation holds at all but the earliest times, an appropriate 
criterion for the interval of the response that corresponds to the Theis conceptual model is 
the onset of the plateau of the derivative plot (Figure 19). 
 

 
 

Figure 19. Cooper-Jacob analysis with the drawdown derivative 
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Example: 
 
The addition of the derivative to the semilog plot increases the defensibility of a 
Cooper-Jacob straight-line (CJSL) analysis. The application of the derivative is illustrated 
with data from the Gridley pumping test (Walton, 1970). As shown in Figure 20, the 
simultaneous plotting of the drawdown and the derivative confirms that the derivative 
reaches a plateau, and helps identify in a direct visual manner the appropriate portion of 
the response for the analysis. 
 
The transmissivity is calculated directly from the value of the plateau of the derivative: 
 

 𝑇𝑇 =
𝑄𝑄

4𝜋𝜋
 

1
𝐷𝐷𝑡𝑡

=
(220 gpm)

4𝜋𝜋
 

1
(2.4 ft) �

192.5 ft3/d
gpm

� =  𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 𝐟𝐟𝐭𝐭𝟐𝟐/𝐝𝐝 

 

 
 

Figure 20. Gridley pumping test, semilog drawdown and derivative plots 
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10. Cooper-Jacob distance-drawdown analysis 
 
Cooper-Jacob distance-drawdown analyses are not conducted as frequently as 
time-drawdown analyses; however, they are straightforward to apply and in many cases 
yield very representative estimates of transmissivity. The analyses can be helpful in 
inferring that there are pockets of material that have different properties from the bulk of 
the medium and detecting the presence of boundaries. 
 
The Cooper-Jacob distance-drawdown analysis is developed by differentiating the 
Cooper-Jacob approximation with respect to log r at a constant elapsed time: 
 

𝜕𝜕𝜕𝜕
𝜕𝜕[log{𝑟𝑟}]�𝑡𝑡

= − 2.303 
𝑄𝑄

2𝜋𝜋𝜋𝜋
  

 
Solving for T: 
 

𝑇𝑇 = −2.303 
𝑄𝑄

2𝜋𝜋
�

𝜕𝜕𝜕𝜕
𝜕𝜕[log{𝑟𝑟}]�𝑡𝑡

�
−1

= − 2.303 
𝑄𝑄

2𝜋𝜋
 (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝑡𝑡)−1  

 
Method: 
 
Plot s vs. r at a fixed time, on semilog axes: 
 

 
 

     
 
 
 
 
 
Here: ∆s = drawdown per log cycle r 
 r0 = distance extrapolated to s = 0  

𝑇𝑇 = −2.303 
𝑄𝑄

2𝜋𝜋
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1 

 

𝑆𝑆 = 2.2459 
𝑇𝑇𝑇𝑇
𝑟𝑟02

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝜕𝜕𝜕𝜕

𝜕𝜕[log{𝑟𝑟}] =
∆𝑠𝑠

log cycle  𝑟𝑟
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Example analysis: 
 

Wenzel (1936) reported the results from a pumping test conducted in the Platte River 
Valley near Grand Island, Nebraska. This was an extraordinarily well instrumented test 
involving 81 observation wells. A map showing the locations of the wells is reproduced 
here in Figure 21 (Jacob, 1963; Figure 74). 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21. Locations for wells for the pumping test near Grand Island, Nebraska 
Reproduced from Jacob (1963) 
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The pumping test was conducted at a continuous rate of 540 gpm. Wenzel (1936) 
analyzed the drawdowns after 48 hours using a steady-state approach, developing 
separate estimates of the transmissivity for seven of the eight lines of wells. The 
drawdowns for the wells along all of the lines after 48 hours of pumping are plotted in 
Figure 22. 
 

 
 

Figure 22. Drawdowns after 48 hours of pumping 
Data from Jacob (1963; Table 2) 
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For distances less than about 300 ft, the drawdowns along all of the lines approximate a 
single straight line on the semilog plot. Fitting a straight line through this portion of the 
data yields a transmissivity of 10,500 gpd/ft: 
 

𝑇𝑇 = −2.303 
(540 gpm)

2𝜋𝜋
(− 3.054 ft)−1 �

1440 min
d

� = 𝟗𝟗𝟗𝟗,𝟑𝟑𝟑𝟑𝟑𝟑 
𝐠𝐠𝐠𝐠𝐠𝐠
𝐟𝐟𝐟𝐟

  
 
Jacob (1963; Table 3) lists seven values of transmissivity that range from 90,000 to 
102,000 gpd/ft. 
 
 

 
 
Figure 23 Cooper-Jacob distance-drawdown analysis for Grand Island pumping test 
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11. Composite analyses 
 
It is important to note that the argument for the Theis solution, u, is expressed in terms of 
the ratio t/r2, where t is the elapsed time and r is the distance between an observation well 
and the pumping well. The solution therefore predicts that the drawdowns for all 
observation wells completed in the same homogenous aquifer should fall on same curve 
if they are plotted on an axis of t/r2. 
 
Example: 
 
A simple example is considered to illustrate this important point. The conceptual model 
for the example is illustrated in Figure 24. A fully penetrating well is pumped at a 
constant rate, and the drawdown is monitored at four observation wells. 
 

 
 

Figure 24. Example pumping test with multiple observation wells 
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The time-drawdown records for the individual wells are plotted in Figure 25. 
 

 
 

Figure 25. Calculated drawdowns at observation wells 
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Let us re-plot the data, this time using t/r2 instead of t to scale elapsed time with respect 
to the square of the distances between the pumping well and each observation well. 
Cooper and Jacob (1946) referred to a plot of the drawdowns against t/r2 as a composite 
plot. As predicted by the Theis solution, the individual drawdown records collapse to a 
single curve on a composite plot. 
 

 
 

Figure 26. Drawdown data plotted vs. t/r2 
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The time-drawdown records for the individual wells are re-plotted on semilog axes in 
Figure 27. 
 

 
 

Figure 27. Calculated drawdowns at observation wells, semilog plot 
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The Cooper-Jacob approximation can be re-written as: 
 

𝑠𝑠 =
𝑄𝑄

4𝜋𝜋𝜋𝜋
2.303 𝑙𝑙𝑙𝑙𝑙𝑙10 �2.2459

𝑇𝑇
𝑆𝑆
�
𝑡𝑡
𝑟𝑟2
�� 

 
In this form, we see that when the approximation is valid, the drawdown is a linear 
function of the logarithm of t/r2. The composite Cooper-Jacob semilog plot for the 
example is shown in Figure 28. Beyond the limit of applicability of the Cooper-Jacob 
approximation, the drawdowns collapse to a single straight line. 
 

 
 

Figure 28. Drawdown data plotted vs. t/r2 
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Cooper-Jacob straight-line analysis on a composite plot 
 
The Cooper-Jacob analysis for a composite plot is essentially identical to the 
time-drawdown analysis for a single well. The analysis is developed by differentiating 
the Cooper-Jacob approximation with respect to 𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑡𝑡

𝑟𝑟2
�: 

 
 𝜕𝜕𝜕𝜕

𝜕𝜕�𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡
𝑟𝑟2
�

= 2.303 𝑄𝑄
4𝜋𝜋𝜋𝜋

 

 
Solving for the transmissivity, T: 
 

𝑇𝑇 = 2.303 
𝑄𝑄

4𝜋𝜋
 �

𝜕𝜕𝜕𝜕

𝜕𝜕 �log 𝑡𝑡𝑟𝑟2�
�

−1

=  2.303 
𝑄𝑄

4𝜋𝜋
 

1
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 

 
Method: 
 
Plot s vs. t/r2 on semilog axes: 
 

 
 
 

     
 
 
 
 
 
Here: ∆s = drawdown per log cycle t/r2 
 (t/r2)0 = t/r2 extrapolated to s = 0 
 
  

𝑇𝑇 = 2.303 
𝑄𝑄

2𝜋𝜋
(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)−1 

 

𝑆𝑆 = 2.2459 𝑇𝑇 �
𝑡𝑡
𝑟𝑟2
�
0
 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝜕𝜕𝜕𝜕

𝜕𝜕 �log � 𝑡𝑡𝑟𝑟2��
=

∆𝑠𝑠

log cycle 𝑡𝑡
𝑟𝑟2
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The Cooper-Jacob analysis for this example is presented in Figure 29. As expected, the 
slope of the straight line yields the transmissivity that was specified to create example 
calculations. 
 

 
 

Figure 29. Cooper-Jacob composite analysis 
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12. Case study: Application of the Cooper-Jacob composite analysis 
 
Schad and Teutsch (1994) reported the results of pumping tests conducted at a well-
instrumented site near Stuttgart, Germany. The published data are used to demonstrate 
the application of the composite analysis. A site map is reproduced in Figure 30. 
 

 
 

Figure 30. Site map for Horkheimer pumping test 
  



 
 46 of 50 
 
P:\0996-XX_GAC-MAC\Notes\02_Foundations of pumping test interpretation_1\02_01_Foundations of pumping test 
interpretation_1_Notes.docx 

Well Br3 was pumped continuously at an average rate of 13.6 L/sec for four days. The 
drawdown records for the four observation wells reported in Schad and Teutsch (1994) 
are reproduced in Figure 31. 
 

 
 

Figure 31. Drawdown data for selected observation wells 
Reproduced from Schad and Teutsch (1994) 
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Original analysis 
 
The reporting of the pumping tests analyses in Schad and Teutsch (1994) are reproduced 
below. Schad and Teutsch (1994) analyzed the drawdown records for the individual 
observation wells separately, with three different transmissivity estimates derived from 
different portions of the responses. Phase one corresponds to “early” time, phase two 
corresponds to “intermediate” time, and phase three corresponds to “late” time. 
 
Schad and Teutsch (1994) compiled summary statistics of the results of the individual 
analyses. The reporting in their paper is reproduced below. As shown on the table, the 
transmissivity estimates from the 0.029 to 0.13 m2/s, a factor of about 5. 
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Alternative analysis 
 
The drawdown data shown in Figure 31 are re-plotted on a composite plot in Figure 32. 
After some early-time curvature, the drawdown data from all four observation wells 
appear to approximate closely a straight line. The single straight-line analysis yields a 
consistent transmissivity estimate of 0.02 m2/s. This estimate is less than smallest value 
reported in Schad and Teutsch (1994). 
 

 
 

Figure 32. Composite analysis 
  

10-4 10-3 10-2 10-1 100 101 102

t/r2 (min/m2)

0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.3

0.4

D
ra

w
do

w
n 

(m
)

Well 10, r = 15.2 m
Well 13, r = 36.5 m
Well 15, r = 51.3 m
Well 22, r = 66.8 m

( )

3

1

2

m
1000 L

13.6 L/s

2 m /sec

2.3026 0.124 m4
2.01 10

T π
−

 
 
 

−=

=

×



 
 49 of 50 
 
P:\0996-XX_GAC-MAC\Notes\02_Foundations of pumping test interpretation_1\02_01_Foundations of pumping test 
interpretation_1_Notes.docx 

13. Summary of key points 
 
1. The Theis model provides a benchmark against which the observed responses to 

pumping at a particular site can be assessed. Checking site conditions against a list of 
the ideal assumptions allows analysts to identify the conceptual model that best 
describes their site. 

 
2. The Cooper-Jacob method is the simplest method of interpreting pumping tests in the 

hydrogeologist’s toolkit. This simplicity can be deceptive: the method frequently 
yields the most reliable estimates of transmissivity. There seems to be little 
appreciation of its underlying strengths. 

 
3. The conceptual models that underlie the Theis and Cooper-Jacob analyses are 

identical. The two analyses do not provide independent transmissivity estimates. 
Rather, the two analyses are complementary. Therefore, it does not really make sense 
to report separate transmissivity estimates derived from Theis and Cooper-Jacob 
analyses of the same data. However, there is no reason why an analyst should not 
employ both methods for the same set of data. Obtaining similar results with both 
methods confirm that the interpretation is at least internally consistent. It is up to 
analyst to identify and only report the more reliable transmissivity estimate. 

 
4. The addition of the derivative to the semilog plot increases the defensibility of a 

Cooper-Jacob straight-line (CJSL) analysis. The simultaneous plotting of the 
drawdown and the derivative confirms that the derivative reaches a plateau, and helps 
identify in a direct visual manner the appropriate portion of the response for the 
analysis. 

 
5. The composite plotting approach is a straightforward extension of the Cooper-Jacob 

time-drawdown analysis. However, it simplifies the estimation of the representative 
bulk-average transmissivity and has important diagnostic value. Hydrogeologists 
should always prepare composite plots when drawdown records are available for 
more than one observation well. 
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