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Overview

In these notes, a detailed discussion of the Theis model of an aquifer response to pumping
is presented, along with the analyses that are based upon it. The Theis model is the
foundation of pumping test interpretation. When applied appropriately, the Theis model
yields representative estimates of the bulk-average transmissivity of a formation. The
Theis model incorporates a set of relatively restrictive assumptions. Although some of
these assumptions may be violated to varying degrees during actual tests, the Theis model
has enduring value as a benchmark against which the observed responses to pumping can
be assessed, supporting the diagnosis of site conditions.

Outline

The Theis (1935) conceptual model
The mathematics of the Theis solution
Example Theis analysis
The Cooper and Jacob (1945) approximation
Overview of the Cooper-Jacob analyses
Cooper-Jacob time-drawdown analysis
Motivation for using Cooper-Jacob time-drawdown analysis
Choosing between the Theis and Cooper-Jacob analyses
Introduction to Derivative Analysis
. Cooper-Jacob distance-drawdown analysis
. Composite analyses
. Case study: Application of the Cooper-Jacob composite analysis
. Summary of key points
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1. The Theis (1935) conceptual model

The conceptual model that underlies the Theis (1935) solution is the foundation on which
all other analytical models of aquifer response to pumping are built. The Theis conceptual

model is illustrated schematically in Figure 1.
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Figure 1. Conceptual model of the Theis solution

To examine the foundations of the Theis model it is essential that its underlying
assumptions be established clearly. Important assumptions are made regarding the
aquifer, the pumping well and observation wells and background conditions. The
assumptions incorporated in the Theis conceptual model are listed on Table 1. The

assumptions are assembled into four categories.
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Table 1. Assumptions incorporated in the Theis conceptual model

The aquifer

1 Darcy’s Law is valid

3 The transmissivity of the aquifer is uniform and isotropic

3 The aquifer is infinite in areal extent

4 The aquifer is perfectly confined by impermeable strata across its
top and bottom

5 The potentiometric surface always remains above the top of the
aquifer
6 The release of water from storage is instantaneous and governed

by linear constitutive relations with uniform properties that remain
constant through time

The pumping well

7 There is a single pumping well

8 The pumping well penetrates the full thickness of the aquifer
9 The pumping well has an infinitesimal diameter

10 The well pumps at a constant rate

The observation wells

11 | The observation wells have infinitesimal diameter

Background conditions

12 The changes in water levels caused by pumped have been
isolated from any background temporal trends

The last assumption does not mean that the groundwater levels must be the same
everywhere at the start of pumping or that they be steady prior to the test (i.e., a flat
potentiometric surface). Nor does it mean that there cannot be changes in water levels
during the test that are not caused by pumping from the test well. Rather, the assumption

requires that the changes in groundwater levels attributable solely to pumping be
established.
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Motivation for considering the Theis model

The Theis model is clearly a highly idealized model of aquifer response to pumping. As
practitioners, we must recognize that many of the underlying assumptions will be
violated to varying degrees during actual tests. Since no actual situation will ever
conform exactly to the idealized Theis model, why do we bother even invoking the model
to interpret pumping test data? There are at least two good reasons:

1. The Theis solution can in fact be used to interpret at least a portion of almost all
pumping test data. Although the underlying assumptions of the Theis model are quite
restrictive, there is generally a portion of the test response for which the assumptions
are not violated too severely; and

2. The Theis model provides us with a benchmark against which we can assess the
observed responses to pumping and diagnose the actual conditions at our site. In
essence, checking site conditions against a list of the ideal assumptions allows us to
identify the conceptual model that best describes our own site.

Application of the Theis model provides preliminary quantitative characterization of a
site, and just as importantly, provides a starting point for the diagnosis of site conditions.
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2. The mathematics of the Theis (1935) solution

Starting from the assumptions listed in Section 1, the governing equation for transient
radial flow to a well is written as:

as 10 as
—=T-— — <r<ow
Sat Trar(rar) 0<r

Here:

drawdown [L];

radial distance from the pumped well to the observation well [L];
elapsed time since the start of pumping [T];

transmissivity (= Kx x B) [L*T"'];

storage coefficient (= S5 x B) [-];

u: horizontal hydraulic conductivity [LT™];

Sy specific storage [L™!]; and

B: aquifer thickness [L].

NN T YR

The inside and outside boundary conditions are:
limZnTrﬁ (r,t) =-0Q
-0 or
s(o,t) =0

The initial conditions are:

s(r,0)=0

The parameter Q denotes the pumping rate [L*T!]. A positive value of Q denotes a
withdrawal of water from the aquifer, which gives rise to a positive drawdown, that is, a
decline in water levels with respect to non-pumping conditions.

The governing equation, boundary and initial conditions comprise a classical boundary
value problem. When C.V. Theis posed the problem in 1935 with respect to transient
flow to a well, the solution was well known in the theory of heat conduction (for
example, the solution is presented in /ntroduction to the Mathematical Theory of the
Conduction of Heat in Solids, H.S. Carslaw, 1921). Theis’ crucial contributions to the
problem was not the solution; rather, it was his insight that an analogy could be made
between the transient flow of groundwater in porous media and the transient conduction
of heat in solids. Theis’ analogy has formed the basis for all subsequent developments in
transient groundwater hydraulics.
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The solution to the boundary-value problem set up by Theis can be derived by several
alternative integral transform methods or by successive integration using the Boltzmann
transformation. The solution for the drawdown at any distance » and elapsed time ¢ is
written as:

“1
s(r,t) =% J;Zs " EXP{-y} dy

4Tt

The integral is one version of the exponential integral, which arises in other physical
applications. Abramowitz and Stegun (1972, p. 228) define the integral as:

[ w%EXP{—y} dy = Ey(x)

The solution can be therefore be written as:

r0) = Q g r2S
S B = 0T P ATt

The function £ is slightly different in form from the “classical” exponential integral
defined as:

. Q (*1
Ei(x) = T ; EXP {—y} dy

The functions £; and Ei are closely related:
E;(x) = —Ei(—x)

Using this last identity, the Theis solution can be written as:

s
s(r,t) = 47QT_T —Ei{— %}l

The last equation is the form of the solution that usually appears in the petroleum
engineering literature, where it is referred to as the “line-sink” or as the “Ei” solution (see
for example, Matthews and Russell, 1967; p. 11).
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Hydrogeologists write their version of the Theis solution as:
s(r,t;u) = LW(u)
4nT

Here u is the dimensionless argument of the exponential integral:

B r2S
Y ATt

W(u) is referred to as the Theis well function.

Comparing the different forms of the Theis solution, we see that W(u) = E(u) = —Ei(-u).

The Theis well function represents a dimensionless form, sp, of the drawdown at any
radial distance 7 and time ¢:

4anT r2S
Sp =TS(T',1') =W u=m

The dimensionless quantity u is inversely related to the elapsed time, the values of 1/u
become progressively larger as the duration of the test continues. We are accustomed to

viewing time moving left to right; therefore, as shown in Figure 2 the Theis well function

is generally plotted on log-log axes as W(u) against 1/u.
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Figure 2. Theis well function
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3. Example Theis analysis

Analysis of drawdown data with the Theis solution is illustrated with data from a test
conducted at Gridley, Illinois (Walton, 1970). The average pumping rate is 220 gpm. The
drawdown data from Well #1, located 824 ft from the pumping well, are plotted in
Figure 3.
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Figure 3. Drawdowns for Gridley observation Well #1
Data from Walton (1970)

9 of 50

P:\0996-XX GAC-MAC\Notes\02_Foundations of pumping test interpretation_1\02_01_ Foundations of pumping test
interpretation_1_Notes.docx



The results of the match of the Theis solution to the observed drawdowns are shown in
Figure 4. The Theis analyses can be executed by either:

e Using a type-curve matching procedure, which involves overlaying versions of
Figures 2 and 3 having the same scales;

e Conducting a visual match with a computer-assisted interpretation package, which
involves moving the type curve with a mouse on a computer screen to overlie the

data; or

e Conducting an “automatic” match with a computer-assisted interpretation
package, which involves inferring the aquifer parameters from a nonlinear least
squares regression.
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Figure 4. Match of the drawdowns with the Theis solution
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4. The Cooper and Jacob (1945) approximation

The Theis well function can be expanded in the following infinite series:

2 3

u u

W) =—-0.5772 — In{u} + u — %2 3xa

The leading term 0.5772 is referred to as Euler’s constant.

Cooper and Jacob (1945) recognized that when u becomes sufficiently small, the Theis
well function can be approximated closely using just the first two terms of the series:

W(u) = —0.5772 — In{u}

In other words, beyond some value of u, the arithmetic value of the dimensionless
drawdown plots as a straight line against the logarithm of u. Reflecting this limiting
behaviour, the Theis well function and Cooper-Jacob approximation are shown together
on a semilog plot in Figure 5. As shown in the figure, for larger values of //u the
Cooper-Jacob approximation matches the Exponential integral closely. The limit of
applicability of the Cooper-Jacob approximation is typically cited to be u < 0.01
(1/u>100) [see for example, Todd and Mays (2005)]. However, as shown in Figure 5,
the Cooper and Jacob approximation is still very close for larger values of u. For
example, for u = 0.1 (//u = 10), the error in the approximation is still only about 5%.

Substituting for the approximation of W(u) in the Theis solution yields:

2
strt) = 4% W) = % [-0.5772 — Infu}] = 4% ~0.5772 — In {Z_Ti}l

This solution can be rearranged using the properties of the log function:

t) = Q l {EXP 0.5772 <4Tt>}— 4 l {22459 Tt
s(r,t) = o IEXPA=05772} X \ 55 )i = 27 % %}

Finally, converting to log10 (which requires only the factor /n(10)=2.303), we obtain:

0Q Tt
s(r,t) = 0T 2.303 log {2.2459 ﬁ}
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Figure 5. Cooper-Jacob approximation of the Theis well function
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5. Overview of the Cooper-Jacob analyses of drawdown data
Three types of analyses are developed from the Cooper-Jacob approximation:
e Time-drawdown analysis

The drawdown records of individual wells are analyzed, by plotting drawdown
(arithmetic scale) versus elapsed time (log scale);

The interpretation of individual drawdown-versus-time records is a staple technique of
hydrogeologic practice.

e Distance-drawdown analysis
The drawdowns at multiple wells at a single time are analyzed, by plotting drawdown
(arithmetic scale) versus distance from the pumping well (log scale); and

e Composite analysis
The complete time-drawdown records of multiple wells are analyzed, with drawdown
(arithmetic scale) plotted against time divided by distance-squared (¢/7°).

All three Cooper-Jacob Straight-Line (CJSL) analyses comprise three tasks:

1. Identification of that portion of the response that matches the Theis conceptual model
— that is, identification of a sustained interval over which the data approximate a
straight line on a semilog plot;

2. Calculation of the slope of the straight line; and

3. Estimation of the transmissivity and confined storage coefficient (storativity).

The developments of the three Cooper-Jacob analyses are presented in the following
sections.
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6. Cooper-Jacob time-drawdown analysis

The Cooper-Jacob time-drawdown analysis is developed by differentiating the Cooper-
Jacob approximation with respect to log {¢} at a constant radial distance 7:

0s | = 2.303 ¢
d[log {t}]1. o AT
Solving for T:

d

-1
S
Y —| _ 2303 (SLOPE|,)"!
gol. 41

T = 2.303—(

4\ d(lo

Method:

Plot s vs. t at a fixed radial distance, on semilog axes:

8

das A4s

SLOPE = d(logt) - log cycle t

log cycle ¢

t (log axis)

T= 2.303%(SL0PE)’1
T,

2
r

§ =2.2459

Here: As = drawdown per log cycle ¢
to = time extrapolated to s =0
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Example analysis:

The drawdowns at observation well Well #1, located 824 ft from the pumping well, are

plotted in Figure 6.
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Figure 6. Drawdowns for Gridley observation Well #1
Data from Walton (1970)
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Beyond about 20 minutes, the drawdowns approximate a straight line on the semilog plot.
Fitting a straight line through this portion of the data yields a transmissivity of
10,500 gpd/ft:

(220gpm) 1 1440 min
4 (554f)| d

d
= 10,500 225
ft

T =2.303

Converting the transmissivity yields 1,400 ft?/d. The estimated transmissivity is close to
the value of 1,320 ft?/d estimated from the Theis analysis (Figure 4).
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Figure 7. Cooper-Jacob time-drawdown analysis for Gridley observation Well #1
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7. Motivation for using the Cooper-Jacob time-drawdown analysis

In contemporary practice, aquifer test data are generally interpreted with the aid of
computer-based analysis packages. These packages support either visual type curve
matching or automatic regression of the data. The obvious question arises: Why should
we consider methods based on the Cooper-Jacob approximation when it is just as
straightforward to use the exact Theis solution? There are at least three compelling
reasons to retain and apply both analyses.

The Theis log-log analysis has a built-in threat to its reliable application. In our opinion,
the log-log analysis tends to inappropriately focus the analyst’s attention on the data
obtained relatively soon after the start of pumping. A logarithmic axis for the drawdown
visually exaggerates the magnitude of early drawdowns. Since the function W(u)
becomes relatively flat for larger values of //u, it is tempting to fit the response where the
response exhibits the most distinctive curvature. As shown in Figure 8, the larger
curvature occurs for the smallest values of //u, that is, at relatively early times.
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Figure 8. Area of greatest “apparent” response in the Theis solution
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There is usually significant uncertainty associated with data collected soon after the start
of pumping:

1. The magnitudes of the early drawdowns are relatively small, so there is bound to be
some imprecision in their measurement; and

2. There is usually some noise in the data because of the adjustments in the pumping
rate that are often required at the start of a test.

Example 1:

The first source of uncertainty is illustrated with the drawdown data recorded during a
pumping test conducted at Elmira, Ontario. As shown in Figure 9, this particular analysis
with the Theis type-curve focused on matching the data from the first 10 minutes of
pumping. These data are much less significant than the later drawdowns with respect to
the diagnosis of the response of the aquifer to pumping. Furthermore, the early data are
limited in their resolution. The drawdown record exhibits an interesting feature that is
characteristic of data obtained with a pressure transducer: the record shows distinct
jumps. The jumps are in fact directly related to the sensitivity of the transducer, rather
than indicating steps in the actual response or variations in the pumping rate. The jumps
make up most of the changes in water levels at the early stages of the test.
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Figure 9. Drawdown response relatively distant from the pumping well
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Example 2:

Uncertainties introduced by brief variations in the pumping rate at the start of a test are
illustrated by a hypothetical example that is intended to represent typical conditions

during a pumping test. The aquifer is 5 m thick, with a horizontal hydraulic conductivity
of 10" m/sec and a specific storage of 10 m™!. The aquifer is pumped for

100,000 seconds (just over 1 day). It is assumed that the pumping rate is held at a
constant rate of about 10 USgpm, except for a brief period of adjustment during the first
10 minutes. The pumping history is tabulated below and plotted in Figure 10.

Time Pumping rate Pumping rate
(minutes) (USgpm) (m?/sec)
0-5 19 1.210E-3
5-10 14 9.075E-4
10> 10 6.309E-4
0.0020 ] | ] ] | ]
0.0015 — -
m | L
[
v _. L
£ i _
[]
® 0.0010 — -
(=2} — -
£
Q _ -
S
= | L
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0.0005 — -
0.0000 — T T
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Time (secs)

Figure 10. Pumping history for Example 2
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We note two aspects of the variations in the pumping rate during the test:

1. The variations in the pumping rate considered in this example are typical for an actual
test. Most tests require a brief interval during which valves are adjusted to establish a
constant rate over the longer term; and

2. The duration of the period of adjustments in the pumping rate at the start of this
example are brief relative to the entire duration of the test. When plotted to full scale,
the two steps at the start appear as small blips. We might not even detect or record
these “blips”.

We will examine the drawdown at an observation well 5 m from the pumping well. The
first plot of the drawdowns at the observation well, Figure 11, is made with log-log axes,

in anticipation of an analysis with the Theis solution.
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Figure 11. Drawdown calculated at r =5 m
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In a “real-world” situation, it is possible that the very early adjustments of the pumping
rate might not even be recorded. In that case, we might be inclined to match the early
portion of the data, which is indeed matched closely with the Theis type curve. The
deviation between the Theis solution and the data at later times might be explained as a
“boundary effect”, for example. The results of the analysis are shown in Figure 12. The

estimated transmissivity is 5x10”° m?/s, half of the true transmissivity in this example. If

we concentrated on the early time data but used the pumping rate that was maintained
through almost the entire test, we could make very serious errors in our interpretations.
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Figure 12. Match with the Theis solution: Analysis #1
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The Theis solution calculated assuming a constant pumping rate of 6.309x10™* m?/s, the

rate for all but the first 10 minutes of the test, is shown in Figure 13. The estimated
parameters are identical to those specified for the example. If we chose to fit a Theis

curve to the data beyond 1,000 seconds (which is still only 16 minutes into the day-long

test), and assumed the constant rate established after 10 minutes, our interpretation is

reliable; however, we open ourselves to the accusation that we have deliberately ignored

much of our data.
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Figure 13. Match with the Theis solution: Analysis #2
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The early variations in the pumping rate appear to have a dramatic effect on the response
shown in Figure 13. The significance of these variations is blown out of proportion by the
use of a logarithmic axis for drawdown.

The semilog plot of the drawdowns at the observation well is shown in Figure 14. This
plot allows us to clearly see the evolution of the longer-term response, and thereby
identify the effects of the brief early variations in the pumping rate. The dashed line
shown on the plot represents the drawdown that would have been observed if the
pumping rate had remained constant throughout the test. A Cooper-Jacob interpretation
of the later time data is essentially insensitive to the early variations in the pumping rate.
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Figure 14. Drawdown calculated at »r = 5 m, semilog plot
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8. Choosing between the Theis and Cooper-Jacob analyses

The preceding examples suggest that analyses that focus on the earliest portion of the
drawdown response may yield unreliable estimates of aquifer properties. The examples
may have suggested that the Theis log-log analysis is prone to this problem. It is
important to note that this is not a fundamental defect in the Theis analysis. Rather, these
examples should be taken as warnings that like all analysis techniques, the Theis log-log
analysis must be applied critically. Cooper-Jacob analyses are only superior if they lead
the analyst to focus on the portion of the aquifer response that yields the most
representative estimate of transmissivity.

The key point to bear in mind is that the conceptual models that underlie the Theis and
Cooper-Jacob analyses are identical. The two analyses do not provide independent
transmissivity estimates. Rather, the two analyses are complementary. Every pumping
test analyst should employ both methods for the same set of data. The results from the
two methods should be similar, demonstrating that the interpretation is at least internally
consistent. This approach is demonstrated with a case study.

Case study

A pumping test to support a development application was conducted at a site in Kinloss
Township, southern Ontario. The test was conducted in a well open across the upper
portion of the bedrock. Key aspects of the test are indicated below.

e The depth to the water table on-site is between 2 and 4 m.

e The well is open in the upper portion of the bedrock, in the Dundee Formation, a
dolomitic limestone. The primary water-bearing zone in the bedrock is between 2 and
4 m below the overburden-bedrock contact.

¢ On site, the overburden is approximately 33 m thick. The overburden consists of sand
and bouldery gravel with thickness up to 27 m, underlain by a stiff, dense stony till
that is referred to locally by drillers as hardpan. The presence of the till unit results in
a confined bedrock aquifer.

The well was pumped for 1 day at an average rate of 25 Igpm (1.89x107* m?/sec).
Drawdowns were measured only in the 4-inch diameter pumping well (7, = 0.0508 m).
The drawdowns were analyzed using the Theis and Cooper-Jacob methods.
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1. Theis analysis

The Theis analysis is reproduced in Figure 15. The transmissivity estimated with the
analysis is 3.2x107 m?/sec.
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Figure 15. Pumping test example, Theis analysis
The application of the Theis analysis for this example appears to be a reasonable. The
analyst restricted the type-curve match to between about 20 seconds and 400 seconds.
The earliest drawdown may incorporate some wellbore losses, and the drawdowns appear
to stabilize beyond 1000 seconds of pumping.
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i1. Cooper-Jacob straight-line analysis

The reported Cooper-Jacob analysis is reproduced in Figure 16. The analyst identified
what appeared to be a straight line and fit that portion of the response. The slope of the
line drawn by the analyst is about 0.72 m per log cycle of time. If we substitute this into
the formula for the transmissivity, we obtain:

T = 2.30264%(SL0PE)‘1
26 (1.89 x 1073 m3/sec)

= 2.30 (0.72m) !
4
= 4.8 x 10~* m?/sec
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Figure 16. Pumping test example, Reported Cooper-Jacob analysis

The transmissivity estimated with the Cooper-Jacob analysis is about 15 times higher
than the value estimated with the Theis analysis. A qualified hydrogeologist would not
simply report both transmissivity estimates and invite the reader to choose the more
reliable value. Rather, a qualified hydrogeologist would note that the Theis and Cooper-
Jacob analyses share the same underlying conceptual model, and would further note that
internally consistent analyses should yield similar transmissivity estimates.
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iii. Cooper-Jacob straight-line re-analysis

In reviewing the preceding analyses and results, we should immediately notice that the
Theis and Cooper-Jacob analyses were fit to completely different portions of the
drawdown data. The Theis analysis was applied to the data between 20 and 400 seconds.
In contrast, the semilog straight line was fit to the data that begin at about 3,000 seconds.
The data seem to fall closely on two straight lines. The question we should ask ourselves
is: Was the Cooper-Jacob analysis applied to the appropriate portion of the data?

In Figure 17, the Cooper-Jacob analysis is applied to the same portion of the data as the
Theis analysis. As shown in the figure, these data also approximate a straight line.
However, the slope of the first line is about 10.3 m per log cycle of time. If we substitute
the slope of 10.3 m per log cycle ¢ into the formula for the transmissivity, we obtain:

1.89 x 1073 m3/sec
T = 23026 - /589 10.3 m)1

= 3.4 x 1075 m?/sec

The revised transmissivity estimate is essentially the same as the estimate obtained with
the Theis analysis (3.2x10 m?/sec).
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Figure 17. Pumping test example, Revised Cooper-Jacob analysis
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9. Introduction to Derivative Analysis
A Cooper-Jacob straight-line analysis consists of two tasks:

1. Identification of that portion of the response that matches the Theis conceptual model
— that is, identification of a sustained interval over which the data fall on a straight
line in semilog space; and

2. Calculation of the slope for application in the straight-line formula.

The identification of the portion of the response that matches the Theis conceptual model
is simplified by plotting the drawdown derivative. French petroleum engineers led by

D. Bourdet presented this form of data treatment (Bourdet and others, 1983; Bourdet and
others, 1989).

Bourdet and his co-workers defined the derivative as:

d[s(r,t)]
D (8) =— a7

0[In{t}]
The derivative is defined with respect to the logarithm of time, rather than time itself.
This definition follows directly from the Cooper-Jacob analysis. Recalling the Theis
solution:

Q _Q [Pe
WW(U)—— —dx

s(r,t) = 4nT X
u

Substituting for the Theis solution in the definition of the derivative yields:

D, (s) = EXP{ x} xl

0 [ln{t} I47TT f

_ Q i) ©EXP{—x} p u
" 4nT 9w U x "l aIn{t}]

~ Q

_ ¢ EXP r’s
~ 4nT ATt
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If the Theis well function is replaced with the Cooper-Jacob approximation, the
derivative of the drawdown with respect to the natural log of time is:

D; (s) = % [%ln {2.2459 ;—g}]

This is simply:

D; (s) =4-7QT_T

The fact that the derivative of the Cooper-Jacob approximation is a constant should not
come as a surprise. The Cooper-Jacob approximation is valid when drawdown plots as a
straight line against the log of time.

Defining the dimensionless drawdown as:

4anT

S =
b= ¢
The dimensionless forms for the derivative become:

e Theis solution: D;(sp) = EXP{—u}; and
e Cooper-Jacob approximation: D;(sp) = 1.0

The dimensionless form of the derivative of the Theis solution is plotted in Figure 18. As
expected, the derivative converges on the constant value given by the Cooper-Jacob
approximation. The approach to a constant value of derivative is referred to as a
“plateau” in the derivative plot.
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Figure 18. Dimensionless derivative of the Theis solution
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Since the Cooper-Jacob approximation holds at all but the earliest times, an appropriate
criterion for the interval of the response that corresponds to the Theis conceptual model is
the onset of the plateau of the derivative plot (Figure 19).
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Figure 19. Cooper-Jacob analysis with the drawdown derivative
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Example:

The addition of the derivative to the semilog plot increases the defensibility of a
Cooper-Jacob straight-line (CJSL) analysis. The application of the derivative is illustrated
with data from the Gridley pumping test (Walton, 1970). As shown in Figure 20, the

simultaneous plotting of the drawdown and the derivative confirms that the derivative
reaches a plateau, and helps identify in a direct visual manner the appropriate portion of
the response for the analysis.

The transmissivity is calculated directly from the value of the plateau of the derivative:
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Figure 20. Gridley pumping test, semilog drawdown and derivative plots
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10. Cooper-Jacob distance-drawdown analysis

Cooper-Jacob distance-drawdown analyses are not conducted as frequently as
time-drawdown analyses; however, they are straightforward to apply and in many cases
yield very representative estimates of transmissivity. The analyses can be helpful in
inferring that there are pockets of material that have different properties from the bulk of
the medium and detecting the presence of boundaries.

The Cooper-Jacob distance-drawdown analysis is developed by differentiating the
Cooper-Jacob approximation with respect to log 7 at a constant elapsed time:

ds
d[log{r}]

Q
= —2.303 —
. 2nT

Solving for T:

T =—-2.303 Y —as
o %(a[log{r}]

Q

— (SLOPE|)™?!
- (SLOPEI)

-1
) = —2.303
t

Method:

Plot s vs. r at a fixed time, on semilog axes:

[ sLopE= =25 &
As | N\ ~ 0[log{r}] logcycle r

log cycle = ™

.
N
\
N

| >~ ([og axis)
i

Q

T =-2.303 —
2T

(SLOPE)™!

Tt
S =22459 —
To

Here: As = drawdown per log cycle
ro = distance extrapolated to s = 0
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Example analysis:

Wenzel (1936) reported the results from a pumping test conducted in the Platte River
Valley near Grand Island, Nebraska. This was an extraordinarily well instrumented test
involving 81 observation wells. A map showing the locations of the wells is reproduced
here in Figure 21 (Jacob, 1963; Figure 74).

Grain stubble
and trees

Grass pasture

tubble

Farmyard

asture

0 500 1?100 FEET

Figure 21. Locations for wells for the pumping test near Grand Island, Nebraska
Reproduced from Jacob (1963)
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The pumping test was conducted at a continuous rate of 540 gpm. Wenzel (1936)
analyzed the drawdowns after 48 hours using a steady-state approach, developing
separate estimates of the transmissivity for seven of the eight lines of wells. The
drawdowns for the wells along all of the lines after 48 hours of pumping are plotted in
Figure 22.
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Figure 22. Drawdowns after 48 hours of pumping
Data from Jacob (1963; Table 2)
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For distances less than about 300 ft, the drawdowns along all of the lines approximate a
single straight line on the semilog plot. Fitting a straight line through this portion of the
data yields a transmissivity of 10,500 gpd/ft:

d
=93,300 8P
ft

(540 gpm)

1440 min
T =—-2.303 T(_ 3.054 ft) ! |———

d

Jacob (1963; Table 3) lists seven values of transmissivity that range from 90,000 to
102,000 gpd/ft.
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Figure 23 Cooper-Jacob distance-drawdown analysis for Grand Island pumping test
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11. Composite analyses

It is important to note that the argument for the Theis solution, u, is expressed in terms of
the ratio #/#, where ¢ is the elapsed time and r is the distance between an observation well
and the pumping well. The solution therefore predicts that the drawdowns for all
observation wells completed in the same homogenous aquifer should fall on same curve
if they are plotted on an axis of /7.

Example:

A simple example is considered to illustrate this important point. The conceptual model
for the example is illustrated in Figure 24. A fully penetrating well is pumped at a
constant rate, and the drawdown is monitored at four observation wells.

NPt P2 P3 P-4
L L 7 4

VAR . I Y L B B B Y B I W B A B B B N D N A i

l//ll 7 7 777 77T S/

DATA :
b 10.0 m
Ky 11075 m/s
S. s 1= 1075/
Q 5x10~4 a3/s
QB SERVATNTIOW PAINT r
my
Pl 50
p-2 10.0
P-3 20.0
P-4 30.0

Figure 24. Example pumping test with multiple observation wells
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The time-drawdown records for the individual wells are plotted in Figure 25.
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Figure 25. Calculated drawdowns at observation wells
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Let us re-plot the data, this time using #/#° instead of ¢ to scale elapsed time with respect
to the square of the distances between the pumping well and each observation well.
Cooper and Jacob (1946) referred to a plot of the drawdowns against #/+ as a composite
plot. As predicted by the Theis solution, the individual drawdown records collapse to a
single curve on a composite plot.
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Figure 26. Drawdown data plotted vs. #/r?
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The time-drawdown records for the individual wells are re-plotted on semilog axes in

Figure 27.
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Figure 27. Calculated drawdowns at observation wells, semilog plot
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The Cooper-Jacob approximation can be re-written as:

Q

S = 4T

2.3031 [2 2459T<t>]
. 0910 | 2. sz

In this form, we see that when the approximation is valid, the drawdown is a linear
function of the logarithm of #/#°. The composite Cooper-Jacob semilog plot for the
example is shown in Figure 28. Beyond the limit of applicability of the Cooper-Jacob
approximation, the drawdowns collapse to a single straight line.
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Figure 28. Drawdown data plotted vs. #/r?
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Cooper-Jacob straight-line analysis on a composite plot

The Cooper-Jacob analysis for a composite plot is essentially identical to the
time-drawdown analysis for a single well. The analysis is developed by differentiating

the Cooper-Jacob approximation with respect to log (riz)

O __ _—2303-L

d (logriz) 4nT

Solving for the transmissivity, 7:

-1

T = 2303 = % - 2303 2
T 4m a(lo i) ~ "7 4m SLOPE
8 1z

Method:

Plot s vs. #/* on semilog axes:

’ P SLOPE = 0s = as
- d [log {riz}] - log cycleri2

e log cycle +/r2

r/ __ 4#{/}-2 (log axts)
£
(473,
_ Q 1
T = 2.303 - (SLOPE)
21

t
S =22459T (—2>
r</o

Here: As = drawdown per log cycle #/+°
(t/r*)o = t/¥’ extrapolated to s = 0

43 of 50

P:\0996-XX GAC-MAC\Notes\02_Foundations of pumping test interpretation_1\02_01_ Foundations of pumping test
interpretation_1_Notes.docx



The Cooper-Jacob analysis for this example is presented in Figure 29. As expected, the
slope of the straight line yields the transmissivity that was specified to create example
calculations.
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Figure 29. Cooper-Jacob composite analysis
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12. Case study: Application of the Cooper-Jacob composite analysis

Schad and Teutsch (1994) reported the results of pumping tests conducted at a well-
instrumented site near Stuttgart, Germany. The published data are used to demonstrate
the application of the composite analysis. A site map is reproduced in Figure 30.

Well Types:

Alluvial Aquifer

Q s~e"pvc

O & Stainiess Steat

Pa¥ 2" Piszometer Nest

® Large Diameter Wall

(@ 550 men)

Bedrock Formation

@ s-rvc

Figure 30. Site map for Horkheimer pumping test
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Well Br3 was pumped continuously at an average rate of 13.6 L/sec for four days. The
drawdown records for the four observation wells reported in Schad and Teutsch (1994)
are reproduced in Figure 31.
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Figure 31. Drawdown data for selected observation wells
Reproduced from Schad and Teutsch (1994)

46 of 50

P:\0996-XX GAC-MAC\Notes\02_Foundations of pumping test interpretation_1\02_01_ Foundations of pumping test
interpretation_1_Notes.docx



Original analysis

The reporting of the pumping tests analyses in Schad and Teutsch (1994) are reproduced
below. Schad and Teutsch (1994) analyzed the drawdown records for the individual
observation wells separately, with three different transmissivity estimates derived from
different portions of the responses. Phase one corresponds to “early” time, phase two
corresponds to “intermediate” time, and phase three corresponds to “late” time.

Schad and Teutsch (1994) compiled summary statistics of the results of the individual
analyses. The reporting in their paper is reproduced below. As shown on the table, the
transmissivity estimates from the 0.029 to 0.13 m?/s, a factor of about 5.

Parameter LSPT
Number of tests performed ]
Number of evaulated drawgdown curves - 15

Min Mean Max CV°©
Radial distances PW* — OW" 152 406 70.6
Transmissivity for phase two (m*s™") 0.042 0.065 0.13 0.35
Transmissivity for phase three (m?s™') 0.029 0.032 0.035 0.069
Storativity for phase two (-) 0.018 0.035 0.058 0.34
Storativity for phase three (-) 0.026 005 0.11 037

* PW is the pumping well.
® OW is the observation well.
€ CV is the coefficient of variation (standard deviation/mean).
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Alternative analysis

The drawdown data shown in Figure 31 are re-plotted on a composite plot in Figure 32.
After some early-time curvature, the drawdown data from all four observation wells
appear to approximate closely a straight line. The single straight-line analysis yields a
consistent transmissivity estimate of 0.02 m?/s. This estimate is less than smallest value

reported in Schad and Teutsch (1994).
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Figure 32. Composite analysis
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13. Summary of key points

1. The Theis model provides a benchmark against which the observed responses to
pumping at a particular site can be assessed. Checking site conditions against a list of
the ideal assumptions allows analysts to identify the conceptual model that best
describes their site.

2. The Cooper-Jacob method is the simplest method of interpreting pumping tests in the
hydrogeologist’s toolkit. This simplicity can be deceptive: the method frequently
yields the most reliable estimates of transmissivity. There seems to be little
appreciation of its underlying strengths.

3. The conceptual models that underlie the Theis and Cooper-Jacob analyses are
identical. The two analyses do not provide independent transmissivity estimates.
Rather, the two analyses are complementary. Therefore, it does not really make sense
to report separate transmissivity estimates derived from Theis and Cooper-Jacob
analyses of the same data. However, there is no reason why an analyst should not
employ both methods for the same set of data. Obtaining similar results with both
methods confirm that the interpretation is at least internally consistent. It is up to
analyst to identify and only report the more reliable transmissivity estimate.

4. The addition of the derivative to the semilog plot increases the defensibility of a
Cooper-Jacob straight-line (CJSL) analysis. The simultaneous plotting of the
drawdown and the derivative confirms that the derivative reaches a plateau, and helps
identify in a direct visual manner the appropriate portion of the response for the
analysis.

5. The composite plotting approach is a straightforward extension of the Cooper-Jacob
time-drawdown analysis. However, it simplifies the estimation of the representative
bulk-average transmissivity and has important diagnostic value. Hydrogeologists
should always prepare composite plots when drawdown records are available for
more than one observation well.
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A GENERALIZED GRAPHICAL METHOD FOR EVALUATING FORMATION
CONSTANTS AND SUMMARIZING WELL-FIELD HISTORY

H. H. Cooper, jr. and C. E. Jacob

(Published with the approval of the Director of the Geological Survey,
United States Department of the Interior)

Abstract--The capacities of a water-bearing formation to transmit water under
a hydraulic gradient and to yield water from storage when the water table or ar-
tesian pressure declines, are generally expressed, respectively, in terms of a co-
efficient of transmissibility and a coefficient of storage. Determinations of these
two constants are alinost always involved in quantitative studies of ground-water

problems. v

C. V. THEIS [1935, see ‘‘References’’ at end of paper| gave an equation, adapt-
ed from the solution of the analogous problem in heat conduction, for computing
the non-steady drawdown accompanying the radial flow of water to a well of con-
stant discharge. This equation has been used successfully many times for deter-
mining coefficients of transmissibility and storage from observed drawdowns. As
it involves a transcendental function known as the exponential integral and two un-
known coefficients, one of which occurs both in the argument and as a divisor of
the function, the coefficients cannot be determined directly. However, they may
be determined by a graphical method devised by THEIS and described by JACOB {1840,
p. 582] and WENZEL [1842, pp. 88-89]. This method requires the use of a "'type
curve,”’ on which the observed data are superimposed to determine the coefficients.

Later, WENZEL and GREENLEE (1944] gave a generalization of THEIS'
graphical metnod by which the coefficients may be determined {rom tests of one
or more discharging wells operated at changing rates. This method requires the
computation of a special type curve for each observation of drawdown used. It is
without doubt a worth-while contribution to the quantitative techniques of ground-
water hydraulics, but in tests that involve more than a very few discharging wells
or a very few changes in the rates of discharge, the computation of the special
type curves is necessarily so laborious as to make the method difficult to apply.

The present paper gives a simple straight-line graphical method for accom-
plishing the same purposes as the methods developed by THEIS and by WENZEL
and GREENLEE. Type curves are not required. The writers believe that the
straight-line method, where applicable, has decided advantages, in ease of appli-
cation and interpretation. over the other graphical methods. However, as the
method will not be applicable in some cases, it is expected to supplement, ratner
than supersede, the other methods. The method is designed especially for ar-
tesian conditions, but it may be applied successfully to tests of non-artesian aqui-
fers under favorable circumstances.

This paper first gives the development of the method for tests involving a
single discharging well operating at a steady rate, and then generalizes the meth-
od to make it apclicable to tests involving one or more wells discharging inter-
mittently or at changing rates. Examples are given to demonstrate the method.

Straight-line method for a single well discharging at a steady rate

a steady

When sufficient time has elapsed after an artesian well has begun discharging at
e logarithm

rate, the drawdown within a given distance increases approximately in proportion to th
of the time since the discharge began. and decreases in proportion to the logarithm of the distance
from the well, By virtue of this relationship, it is possible to determine the coefficients of trans-
missibility and storage of an aquifer from a simple semi-logarithm:c plot of observed drawdowns.

The drawdown produced by a well discharging at a steady rate from an extensive artesia®
aquifer of uniform thickness and permeability is given by equation (1) [THEIS, 1935},
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s = (Q/47T)W(u)
={Q/47T)(-0.5772 - logeu + u -u2/2.2! +u3/3.31—. . ). . ... cee (1)
Here u = r2S8/4Tt, r = distance from the discharging well, t = time ela i
S/4Tt, _ t ,t = psed since start of disch: .
T = tran§n;15$1b111ty of the aquifer (discharge per unit normal width per unit hydraulic gradsi:n:)rge‘
S = goe{ﬁcx‘ent of storage (volume of water that a unit decline of head releases from storage in ;
vertical prism of the aquifer of unit cross section), and Q = discharge of the well.

For small values of {r2/t) compared i i
e e T e e b D R S
evation (2), , y, for all practical purposes, be approximated as in

s = (Q/47T)[loge(1/u) - 0.5772]
= (Q/47T)[loge (4Tt /r2S) - 0.5772)
or s = (Q/47Tiloge(4e 037721 /x25) = (Q/4mT)logy(2.25Tt/r28). . ... .. ... 2)

The approximation will be tolerable where u is less than about 0.02. Converting to the common
logarithm, we may rewrite equation (2) in any one of the three forms in equations (3), (4), and (5).

s = -(2.303Q/27T){log gr - (1/2)logy(2.25Tt/S). . . ... .. ...... 3)
s = (2.303Q/47T)(logy ot - logo(r25/2.25T)]) . ... .. ......... .. (4)
S = - (2.303Q/47T)(log o(r2/t) - log,((2.25T/S)] .. ... ... ... .. )

The only variables in these equations are the drawdown s, the distance r, and the time t. It is
apparent t‘hat when t is constant, {3) will be the equation of the straight-line plot of s agnlnst. )
logjgr. Similarly, when r is constant, (4) will be the equation of the straight-line plot of s against
logygt. Moreaver, with r and t combined into the single variable (r2/t), (5) will be the equation of
the straight-line plot of s against loglo(rz/l). ’

In each equation the slope of the corresponding strai i i
: ght-line plot is represented by the quanti-
ty on the outside of the brackets. and the intercept of the straight line on the zero-dra\}:vdowr?line
is represented by the second term within the brackets.

. A; T is t‘he only unknown in the quantity representing the slope, the coefficient of transmissi-
bility is rea@xly determined from a semi-logarithmic plot of observed data by equating the slope
pf the plot‘ with the corresponding quantity in equation (3), (4), or (5), and solving for T. After T
is determined, the only unknown remaining in the term representing the intercept will be S. There-
fore, the coefficient of storage may then be determined by equating the intercepi of the plot. with
the corresponding term, and solving for S.

The plots will be straight lines only where (rz/t) is relatively small so that u is small. A
?easurement of drgwdown that is made too soon after the discharge is begun, or too far from the
ischarging well, will plot not on the straight line, but on a curve asymptotic to it. However, in
tests of artesian aquifers u becomes small soon after the discharge is begun, and hence in n;ost

cases little, if any, of the data will fall off the straight line. ’

The three types of graphs that correspond respectively to e i
' k quations (3}, (4), and (5) may be
;ererred to as the distance-drawdown graph, the time-drawdown graph, and the commsite-graw-
__:Wn g raph. The type of graph to be selected for determining the coefficients from a given dis-
charging-well test will depend on the set of data collected in the field.

 Distance-drawdown graph--This is a grapa of the drawdown at a time t after the discharge be-
tB}tns, plotted agains_t r on semi-logarithmic pager with r on the logarithmic scale. It may be
Sigught of as a radxa! profile. of the (llogarithm:c) cone of depression. Equating the quantity out-
o el of the brackets in equation (3) with the slope of the graph, 2.303Q/2»T = As alogygr = slope
ng Ot,'whence T=- (2.303Q/2m!.\log10r/As'. The negative sign indicates that s decreases as
rm}g;;c‘r;(;:;s%sﬁerizx;:nvemence, Aloglor may be made unity by having it represent one loga-

T=-2303Q/727as ... ... .. )
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where As is the difference in drawdown over one logarithmic cycle.

Equating the second term in brackets in equation (3) with th
e Intercept of the st
the zero-drawdown line, and solving for the coefficient of storage, gives equation tz;):aight line on

S=2.25Tt/rg? .. i
where rg is the value of r at the s = O-intercept.

Figure 1 is a distance-drawdown graph for wells that

well discharg:ng at the rate of 2.23 cfs [zfsz by S. W. Lonﬁfxeu43;;§,?t’e:"§y1&%&;;30% another
drawdoxyns at these distances after 18 days of continuous discharge were 5.09, 4.08 z’md ;2]. The
respectively. The difference in drawdown over one logarithmic cycle is (0 69'n . 4'07 it -10 feet,
e aaretore, from equation (6), T = 2.303(2.23 cis)/ (3.  3.08 1) = 0.242 ets/tt, @ 1) =338
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The intercept on thé zero-drawdown line is tq = 680 seconds. Therefore, from equation 9,
g=2.25(0.241 cfs/ft){680 sec)/(1200 2= 0.00028.

Composite drawdown graph--This graph is a plot of the drawdowns in several observed wells
st different times against (r2/t), on semi-logarithmic paper. The formulas for the coefficients of

transmissibility and storage are as in equations (10) and (11).
= -(2.303Q/4#)/As
s = 2.25T/(r%/t)g

where (rz/t)o is the value of (r2/t) at the intercept.

Figure 3 is a composite drawdown graph that includes, in addition to the drawdowns in Figure
3, the drawdowns in a second idle well 1300 feet trom the discharging well, and the drawdowns in
the discharging well itself. The drawdowns in the discharging well are adjusted for an inferred
screen loss of 28.5 feet &]ACOB, 1946). The discharging well is gravel-walled and its screen has
2 nominal diameter of 18 inches. The effective radius of the well is assumed to be 0.75 foot.
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Distance. r. ft.
Fig, 1--Distance-drawdown graph based on draw-
downs’in three wells after 18 days of continuous
discharge from an unconfined sand, Q =2.23 cfs

Time. 1, sec
Fig. 2--Time-drawdown graph for a well 1200
feet from another well discharging from a con-
fined sand, Q = 3.00 cfs

. -T};gosotraight line drawn through the plotted points Intersects the zero-drawdown line at
=00 o ft. Thus, from equation (7), S= 2.25(0.242 cfs/ft)(18 days x 86,400 sec/day)/(1600 0

Time-drawdown graph--This graph is a plot of the drawdowns in one of the observ
. plot of t i { the ob ed wells
against t on semi-logarithmic paper, with t on the logarithmi or

. = 5 o, y g mic scale. The formulas for T and §

T=2303Q/47AS . ... v vttt s ®

S = 2.25Ttg/r2
where tO is the value of t at the intercept.

Figure 2 is a time-drawdown graph for a well 1200 feet {rom anothe i i

: : r well discharging 3.00 ¢f

iruc:;nmitcionf}ni{ aquifer []ACQB, _1946]. The plotted points represent water-level readings {rom an

a 1atic water-stage recording instrument, selected first at one-hour intervals and later at two-
our intervals. The change in drawdown over one logarithmic cycle is 2.28 feet. Accordingly, fro®

equation (8), T = 2,303 (3.00 cfs)/(47x 2.28 ft) = 0.241 cfs/ft.

reczgf fac!—'.hat this value for the coefficient of transmissibility agrees closely with that in the
lf?ers ng example is fortuitous inasmuch as the two sets of data are from tests on different aaW”
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Fig. 3--Composite drawdown graph based on
drawdowns observed in a discharging well
and two neighboring wells in a confined sand

{compare with Fig. 2)

-2.31 feet. This value substituted in
8 cfs/ft. Inasmuch as the measurement
this value does not differ significantly

The change in drawdown over one logarithmic cycle is
equation (10) gives a coefficient of transmissibility of 0.23
of the discharge is correct only to two significant figures,
from that determined from Figure 2.

The intercept on the zero-drawdown line is (r2/t)g = 2000 sq {t/sec. From this value, the co-
efficient of storage is computed to be 0.00027, which agrees closely with the value determined

from Figure 2.

Generalized straight-line method

Before proceeding with the generalization of the straight-line method, it will be necessary to
adopt a set of distinctive symbols to represent the various physical elements involved. The numer-
als 1, 2, 3, . . . will be used to identify the observed wells, and the letter i will be the general sym-
bol for indicating any one of them. Thus, “'Well ;" will be understood to mean Well 1, Well 2,

Well 3, etc., in turn, Other symboils are: AQk = :ncrement of discharge for k = 1, 2,3,4,...1
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tk = time elapsed since the inception of AQy for tk = t/, t”, t™, tiV th

: ! > = o oos t rye = dist
observed well i to the discharging well in which AQy o;:cu’rre:i; A’sik = art’ialﬂérawdo:,?,c? from
served well i produced by the increment of discharge AQy at the time Ff( n ob-

’

n
Qn=4Q)+ AQy + AQg+...AQ, = k21 AQy
which is the algebraic sum of increments of discharge AQq to AQy; and s;" = total drawdown
observed well i produced by increments of discharge AQy to AQy. "in

An increment of discharge AQy may be the initial discharge or a subsequent increase
crease in discharge in any one of the discharging wells. Increases in discharge will be og'r ~de~
increments, and decreases will be negative. It will be convenient to assign numerals to pk e
chronological order, but where two or more increments of discharge occur simultaneous) mt
numerals may be assigned arbitrarily. Yr the

In the treatment of problems involving multiple discharging wells, or chan, i
] : _ , ges in the d
of a single well, use is mgde of the principle of superposition, whereby it is assumed that ltshihtaoré?
drawdown produced in a given well at a given time by several increments of discharge is the 3
b;mc surg of the drawdowns that would be produced independently by those increments of dis g
charge. So far, the results of discharging-well tests have verified thi i N
Sharge. SC ging his assumption for artesian
Equation (12) is according to the principle of superposition.
s =As ¢ As" + A"« .. AsN = T oagk Ll 12)
From equatign (2) the partial dra;.(vdown produced in an observed well i by an increment of dis-
charge AQy is approximately Asi® = (2.3034Q,/4 T)log10(2.25le/l‘21kS), and from equation (12)
the total drawdown, after n increments of discharge, is in equation (13), for n = 1, 2, 3, etc.
n n
sif= T ask= T (2.3034Q/4 k/r2
i WL Asi K21 ( Qc/ wT)loglo(Z.ZSTt /r ikS) ......... (13)
Dividing both sides of equation (13) by Qp, equation (13a) results
.n = )
5"/Qq = | &, (2:3038Qy /47 TQ)log, o(2.25Tt/r2y8). ..., (132)

This may be written as in equation (14) or (15)

n n
/Q)N = .
(s/Q" = - (23047 T2 T (aQ/Qullogrorik - E (8Qy/QyNloggt*-log, (2.25T/5]]. . . (14)
n
(s/Q)" = - (2.30/4=T) T, (AQ,/Qp) log1o(r2/t) % - 1ogyo (2.25T/8)]. ... .......... (15)

‘ The first and second terms in brackets in equation (14} and the first term in brackets in equa-
tion (15_) are the logarithms of the weighted logarithmic means of r2,t, and (r2-t) respectively.
The weighted logarithmic means may be represented by Ty, t, and (ré/t);". Substituting these
symbols in equations (14) and (15), we may now write the three equations (16), (17}, and (18).

(s/Q);" = - (2.303/27T)(logyoF;,, - (1/2)10g1g{2.25T/S)] . . ... .. vvnnns (18)
(s/Q)™ = (2.303/47T)[log ot" - log o(F2; S/2.25T)] ... ......... Nty
(/Q);™ = - (2.303/4nT){log; o(r2/" - 10g1(2.25T/S)] .+« o v oo (18)

These_equat{ops correspond with equations (3), (4), and (5) for single discharging wells, but in-
clude in addition to’§;1, Ty, , and t°, a fourth variable, Q. So that equations (16}, (17), and (18)
will ben the equations of straight-line plots, Q. has been combined with s;" into a single variable
{s/Q)," , which may be referred to as the ‘‘specific drawdown’’ (drawdown per unit discharge)-
Thus, (16), {17), and (18} are the equations of the straight-line plots of the spec:fic drawdown
Against Tyn, tN, and (ré )R, respectively, where 0 is constant in equation (15, Tip is constant in
equation tl?)._andT,.n and th are combined into a single variable in equation ;13). As in equations
(3). (4, and (5), the slope of =ach plot is represented by the quantity on the outside of the brackets
in the corresponding 2guation. and the intercept of the extension of the plot at s Q)i" =015 re-
presented by the second term within the brackets.
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The weighted logarithmic mean distance Ty, for a given observed well at a given time may be
computed in the following manner: (1) Multiply each increment of discharge that occurred before
e given time by the logarithm of the distance from the observed well to the well in which the in-
crement occurred; (2) sum the products algebraically; (3) divide the sum of the products by the
slgebraic sum of the increments of discharge; and (4) extract the antilogarithm of the quotient. The
result will be the distance Tjn- The weighted logarithmic means t? and (r /t)i" are computed in a
similar manner, but where Ty, and T are already computed, (r2/t);® may be obtained more con-
seniently by dividing T2;, by 1" directly.

The weighted logarithmic means ;in and " both have physical significance. From a compari-
son of equation (16) with equation (3) it is evident that ry, is the distance at which a single well dis-
charging at a rate Q, would produce the drawdown s;" at the elapsed time ti after the discharge
pegan. A recognition of the significance of these quantities is helpful in interpreting the plots.

The three types of graphs corresponding, respectively, to equations (16), (17), and (18) are re-
ferred to as the generalized distance-drawdown graph, the generalized time-drawdown graph, and
the generalized composite drawdown graph. The formulas for determining the coefficients of
transmissibility and storage from these graphs may be derived in the same manner as in the meth-
od for a single well discharging uniformly; that is, by equating the slopes and the intercepts of the
plats with the corresponding quantities in the respective equations. The formulas are as in the

{ollowing paragraphs.

Generalized distance-drawdown graph
= -2303/[27A5/QM] L (19)

where A(s/Q);" is the change in specific drawdown over one logarithmic cycle.
8 =225/ T2in v v (20)
where T is the value of Ty at the intercept.
Generalized time-drawdown graph

T = 2.303/T4ATAS/QYM] « v e 1)

S =2.25Thy /T2 . ovv v (22)

where Ty is the value of t" at the intercept.

Generalized composite drawdown graph

= 2.300/[4TAG QM o v (23)
S = 22FT/(TZ g v v evveee e e e (24)

where (rz/t)o is the value of (x'z/t)in at the intercept. The use of the generalized composite draw-
down graph is demonstrated in the example that follows.

Figure 4(a) shows the locations of wells at the Central Plant of the municipal water supply of
Houston, Texas [GUYTON and ROSE, 1945}. The columnar sections, based on well logs, show by
stippling the sands penetrated by the wells. The positions of the well screens are also indicated.

Figure 4(b) is a graph of the drawdown and subsequent partial recovery observed in Well F5
on October 10, 1939 [JACOB, 1841}, Well F10, 850 feet {rom Well F5, began pumping 2.27 cfs at
10700™ and stopped pumping at 18M5M, Well F1, 780 feet away, began pumping 2.79 cfs at 10h3om
and stopped pumping at 20M05™ . Well F12. 1060 feet away, began pumping 3.56 cfs at 11h00m® and
continued pumping through the end of the test. Measurements of the water level in Well F5 were
made throughout the day. Some of these measurements. expressed as drawdowns, are platted in
Figure 4(b), where the measurements used in applying the generalized straight-line graphical meth-
od are plotted each as two concentric circles.

~ Computations to determine values of the weighted logarithmic mean (rZ/)" and the correspond-
ing values of the specific drawdown (s/Q)" are given in Table 1, {The subscript i, which refers to
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0—— : : ‘ . i fable 1--Computations of specific drawdown and weighted logarithmic mean {r2/tin for Well FS,
E\, } . | Central Plant, Houston, Texas, October 10, 1939
-l
t—as ‘ haN ™ —— | X hms' k | (r2, /tky| LOB10 Logio | i72ZA n
% i 90 i [ A Time n |chargef t ré/t A 9)x (8 re/)t| sB s/Q
%?E | NI ] hargel rx W/ rhiy A% @@ 78 | TP (s/Q)
2§ L N e—— w ool @le o] ol® (@l | oy | on (03] a9
2 & E ! \ / N ; | b m 1t sec  ft2/gec ft¢/sec cfs  cfs tt¢/sec ft ft/cts
' ~ i
3— - ; 1 Fo5 as0.8 dea10 N 1030 1 1 FI0 850 1800 402  2.604 2.27 .. .- 2.604 402 0.96 0.423
i8R i i ; T 1100 1 .. F10 850 3600 201 2303 227 523 ... ... ... ..
Q. u . : 9 .. F1 780 1800 338 2529 2,79 _7.06 .... .... ... ....
4 g?‘ _ 2 .. e N e .... 5.06 1229 2.429 269 3.20  0.632
= - % : : 1200 1 .. Fi0 850 7200 100.4 2.002 2.27 454 ... .... R PEPON
4 w ‘ﬁé . 2 .. F1 780 5400 112.6 2.052 2,79 5.713 . ...
5 bz DG b 3 . F12 1060 3600 312 2.494 3.56 _8.88 . ... .... ... ...
;‘ Lz ;5? : 3 L. . e e .... 8,62 19.15 2222 167 6.21 0.720
1<) N i 1300 1 .. F10 850 10800 66.9 1.826 2.27 415 ... .... . RPN
';’ 6 - g e B 2 .. F1 18 9000 87.6 1.830 2.79 §5.11
o ~ © 3 .. F12 1060 7200 156 2.194 3568 _7.81 ... .... o e
o n 2 3 ... ... ... ... ... 862 1707 198 955 777 0.901
7 - = —_— 1400 1 .. F10 850 14400 50.2 1.701 227 3.88 .... .... PN e e
2 P2 c‘;s 2 .. Fi1 780 12600 48.3 1.684 2.79 4.70
N Iﬁ aR@ 3 .. F12 1060 10800 104 2.017 356 _T7.18 .... .... e e
8 N 3 .. e uue ..e . ... 862 1574 1826 67.0 8.76 1.016
.= - 15 05 1 .. F10 850 18300 39.5 1.587 2.27 3.63 .... .... e e
g e CE 2 .. F1 780 16500 36.9 1.567 2.79 4.37
e T 3 .. F12 1060 14700 76.4 1.883 3.56 _6.70 .... .... P e
4 (b) s ! I .. 8.62 14.70 1.705 50.7 9.50 1.102
10 - e 2 i 1605 1 .. F10 850 21800 33.0 1.518 2.27 345 ... .... ... o...
W e 2 .. F1 780 20100 30.3 1.481 2.79 4.13
% i | 3 .. FI12 1060 18300 1.4 1.788 356 637 .... .... e e
¥ ‘ | &2 : s .. .. ... ... .... 862 .3.95 1618 415 10.00 1.160
8 10 o1’k I3 14 15 e 17T 18 19 20 2l 1705 1 .. FI10 850 25500 28.3 1.453 2.27 330 .... .... ... ...
Hour. Oct. 10, 1939 2 .. F1 780 23700 25.7 1.410 2.79 3.93
' ] 3 .. Fl12 1060 21900 51.3 1,710 3.56 608 .... .... e [P
Fig. 4--(a) Map showing relative location of wells at Central Plant, Houston, Texas, and columnar 1808 1 3 FIO 850 29280 ) 24 7 1392 gg?, 12'31?30 1545 351 10.37  1.203
sect:ons based on well logs (after GUYTON and ROSE) y B Ta0 27480 224 1345 279 3A83 ... ... .. ...
(b) Drawdown am_:l subsequent partial recovery observed in Well F5, October 10, 1939, 3 o F12 1060 25680 43.8 1.641 3'56 5.842 L .
resulting from staggered operation of wells F10, F1, and F12 3 . . L. . TBe2 {2.755 1.4797 30.18 10.67 1.238
18 45 1 F10 850 3157) 22.9 1.361 2.27 3.089 N N PR
e 2 F1 780 29700 205 1.3t1 279 3.658
; 10 {fti/sec) ot " 3 .. F12 1060 27900 40.3 1.605 356 5714 .... .... e N
oL |- SRS 3 PP ces . ... 8.62 12.461 1.4456 27.90 10.84 1.258
' i 20 05 1 F10 3850 36300 19.9 1.299 2.27 2.949 .... e v e
. - 2 Fl1 780 34500 17.6 1.246 2,79 3476 .... .... e
3 F12 1060 32700 34.4 1,536 356 5.468 .... .... e
4 .. TF10 830 4800 1505 2.177 -2.27-4.942 .... .... e RN
4 e e Ces e . ... 6.35 6.951 1.0946 12.43 9.45 1.488
2100 1 F10 830 39600 18.2 1.261 2.27 2.862 .... ... e eaan
2 F1 780 37800 16.1 1.207 2,79 3.368 ....
3 F12 1060 36000 31.2 1.494 356 5319 ....
4 ., F10 830 8100 89.2 1.950 -2.27 - 4.427 . ... ....
5 ., F1 780 3300 184.4 2.266 -2.79-6.322 .... .... e PR
5 e e v e ... 356 0.800 0.2247 1.678 7.16 2.011
21 35 1 . F10 850 41700 17.3 1.239 2.27 2813 .... .... s e
2 F1 780 39900 15.2 1.183 2,79 3.301 ....
3 F12 1060 38100 29.5 1.470 3.56 5.233 ....
4 F10 &50 10200 70.8 1.850 -2.27 -4.199 . ...
5 .. F1 T80 5400 112.7 2.052 =279 -8.725 . ... ... .. el
20 = i 5 .. ... .... 356 1.423 03997 251 6.51 1.829
Fig. 5--Generalized composite drawdown graph Note: The subscript i, ®hich refers to the observation well, is omitted, because only one observa-
for Well F5, Central Plant, Houston, Texas, tion well is involvec in the example.

October 10, 1939
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the observation well, is omitted from the symbols because only one observation well is involveq
in the example.) The computation procedure may be observed by following the headings of the
columns in the Table. The increments of discharge that occurred before the time given in colump
(1) are listed and summed algebraically in column (9). These increments of discharge are muyjtj.
plied by the logarithms of the corresponding values of (rz/t), and the products are listed and
summed algebraically in column (10). The sum of the products given in column (10) s then divi.
ded by the sum of the increments of discharge given in column (9), and the quotient is listed in
column (gll. The antilogarithm of this quotient, listed in column (12) is the weighted logarithmi,
mean (r4/t)R. The corresponding value of the specific drawdown (s/Q)n {s listed in column (14),

The data given in columns {12) and (14) are plotted in Figure 5. The alignment of the plotted
points is not bad in view of the fact that the screens of the four wells are set at various depths ang
also the fact that the water-bearing sands are lenticular and vary in thickness and permeability
from one well to another. The extent to which these or other circumstances might vitiate the meth.
od used may be judged most readily from the alighment of the points on a simple, straight-line
graph such as Figure 5.

The change in specific drawdown A(s/Q)" over one logarithmic cycle is -0.71 ft per cfs.
Therefore, from equation (23) T = 2.303/(dnx 0.71 ft/cfs = 0.26 cfs/ft.

The extension of the straight line in Figure 5 intersects the line of zero drawdown at (r2/t)n
= (x'z/t)on = 1650 ft2/sec. Thus, from equation (24) S = 2.25(0.26 cfs/ft)/(1650 1t2/sec) = 0.00035,
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